Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Exp Clin Cancer Res ; 43(1): 28, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38254206

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most common malignant tumor of the central nervous system. It is an aggressive tumor characterized by rapid proliferation, diffuse tumor morphology, and poor prognosis. Unfortunately, current treatments, such as surgery, radiotherapy, and chemotherapy, are unable to achieve good outcomes. Therefore, there is an urgent need to explore new treatment targets. A detailed mechanistic exploration of the role of the nuclear pore transporter KPNB1 in GBM is lacking. This study demonstrated that KPNB1 regulated GBM progression through a transcription factor YBX1 to promote the expression of post-protrusion membrane protein NLGN3. This regulation was mediated by the deubiquitinating enzyme USP7. METHODS: A tissue microarray was used to measure the expression of KPNB1 and USP7 in glioma tissues. The effects of KPNB1 knockdown on the tumorigenic properties of glioma cells were characterized by colony formation assays, Transwell migration assay, EdU proliferation assays, CCK-8 viability assays, and apoptosis analysis using flow cytometry. Transcriptome sequencing identified NLGN3 as a downstream molecule that is regulated by KPNB1. Mass spectrometry and immunoprecipitation were performed to analyze the potential interaction between KPNB1 and YBX1. Moreover, the nuclear translocation of YBX1 was determined with nuclear-cytoplasmic fractionation and immunofluorescence staining, and chromatin immunoprecipitation assays were conducted to study DNA binding with YBX1. Ubiquitination assays were performed to determine the effects of USP7 on KPNB1 stability. The intracranial orthotopic tumor model was used to detect the efficacy in vivo. RESULTS: In this study, we found that the nuclear receptor KPNB1 was highly expressed in GBM and could mediate the nuclear translocation of macromolecules to promote GBM progression. Knockdown of KPNB1 inhibited the progression of GBM, both in vitro and in vivo. In addition, we found that KPNB1 could regulate the downstream expression of Neuroligin-3 (NLGN3) by mediating the nuclear import of transcription factor YBX1, which could bind to the NLGN3 promoter. NLGN3 was necessary and sufficient to promote glioma cell growth. Furthermore, we found that deubiquitinase USP7 played a critical role in stabilizing KPNB1 through deubiquitination. Knockdown of USP7 expression or inhibition of its activity could effectively impair GBM progression. In vivo experiments also demonstrated the promoting effects of USP7, KPNB1, and NLGN3 on GBM progression. Overall, our results suggested that KPNB1 stability was enhanced by USP7-mediated deubiquitination, and the overexpression of KPNB1 could promote GBM progression via the nuclear translocation of YBX1 and the subsequent increase in NLGN3 expression. CONCLUSION: This study identified a novel and targetable USP7/KPNB1/YBX1/NLGN3 signaling axis in GBM cells.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Peptidasa Específica de Ubiquitina 7 , beta Carioferinas , Humanos , Apoptosis , Neoplasias Encefálicas/genética , Glioblastoma/genética , Factores de Transcripción , Proteína 1 de Unión a la Caja Y/genética , Proteína 1 de Unión a la Caja Y/metabolismo
2.
J Exp Clin Cancer Res ; 43(1): 34, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38281999

RESUMEN

BACKGROUND: The development of radioresistance seriously hinders the efficacy of radiotherapy in lung cancer. However, the underlying mechanisms by which radioresistance occurs are still incompletely understood. The N6-Methyladenosine (m6A) modification of RNA is involved in cancer progression, but its role in lung cancer radioresistance remains elusive. This study aimed to identify m6A regulators involved in lung cancer radiosensitivity and further explore the underlying mechanisms to identify therapeutic targets to overcome lung cancer radioresistance. METHODS: Bioinformatic mining was used to identify the m6A regulator IGF2BP2 involved in lung cancer radiosensitivity. Transcriptome sequencing was used to explore the downstream factors. Clonogenic survival assays, neutral comet assays, Rad51 foci formation assays, and Annexin V/propidium iodide assays were used to determine the significance of FBW7/IGF2BP2/SLC7A5 axis in lung cancer radioresistance. Chromatin immunoprecipitation (ChIP)-qPCR analyses, RNA immunoprecipitation (RIP) and methylated RNA immunoprecipitation (MeRIP)-qPCR analyses, RNA pull-down analyses, co-immunoprecipitation analyses, and ubiquitination assays were used to determine the feedback loop between IGF2BP2 and SLC7A5 and the regulatory effect of FBW7/GSK3ß on IGF2BP2. Mice models and tissue microarrays were used to verify the effects in vivo. RESULTS: We identified IGF2BP2, an m6A "reader", that is overexpressed in lung cancer and facilitates radioresistance. We showed that inhibition of IGF2BP2 impairs radioresistance in lung cancer both in vitro and in vivo. Furthermore, we found that IGF2BP2 enhances the stability and translation of SLC7A5 mRNA through m6A modification, resulting in enhanced SLC7A5-mediated transport of methionine to produce S-adenosylmethionine. This feeds back upon the IGF2BP2 promoter region by further increasing the trimethyl modification at lysine 4 of histone H3 (H3K4me3) level to upregulate IGF2BP2 expression. We demonstrated that this positive feedback loop between IGF2BP2 and SLC7A5 promotes lung cancer radioresistance through the AKT/mTOR pathway. Moreover, we found that the ubiquitin ligase FBW7 functions with GSK3ß kinase to recognize and degrade IGF2BP2. CONCLUSIONS: Collectively, our study revealed that the m6A "reader" IGF2BP2 promotes lung cancer radioresistance by forming a positive feedback loop with SLC7A5, suggesting that IGF2BP2 may be a potential therapeutic target to control radioresistance in lung cancer.


Asunto(s)
Proteína 7 que Contiene Repeticiones F-Box-WD , Transportador de Aminoácidos Neutros Grandes 1 , Neoplasias Pulmonares , Proteínas de Unión al ARN , Animales , Ratones , Línea Celular Tumoral , Glucógeno Sintasa Quinasa 3 beta/genética , Transportador de Aminoácidos Neutros Grandes 1/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , ARN , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteínas de Unión al ARN/genética , Tolerancia a Radiación
3.
J Pharm Anal ; 12(4): 692-697, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36105169

RESUMEN

Alkaline phosphatase (ALP) is widely expressed in human tissues. ALP plays an important role in the dephosphorylation of proteins and nucleic acids. Therefore, quantitative analysis of ALP plays a vital role in disease diagnosis and the development of biological detection methods. Terminal deoxynucleotidyl transferase (TdT) catalyzes continuous polymerization of deoxynucleotide triphosphates at the 3'-OH end of single-stranded DNA in the absence of a template. In this study, we developed a highly sensitive and selective method based on TdT and endonuclease IV (Endo IV) to quantify ALP activity. After ALP hydrolyzes the 3'-PO4 end of the substrate and generates 3'-OH, TdT can effectively elongate the 3'-OH end with deoxynucleotide adenine triphosphate (dATP) and produce a poly A tail, which can be detected by the poly T probes. Endo IV digests the AP site in poly T probes to generate a fluorescent signal and a new 3'-OH end, leading to the generation of exponential fluorescence signal amplification. The substrate for TdT elongation was optimized, and a limit of detection of 4.3 × 10-3 U/L was achieved for ALP by the optimized substrate structure. This method can also detect ALP in the cell lysate of a single cell. This work has potential applications in disease diagnosis and biomedical detection.

4.
Foods ; 11(16)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36010450

RESUMEN

Bottle gourd (Lagenaria siceraria) is a commercially important cucurbitaceous vegetable with health-promoting properties whose collections and cultivars differ considerably in their flavor aspects. However, the metabolomic profile related to flavor has not yet been elucidated. In the present study, a comprehensive metabolite analysis revealed the metabolite profile of the strong-flavor collection "J120" and weak-flavor collection "G32". The major differentially expressed metabolites included carboxylic acids, their derivatives, and organooxygen compounds, which are involved in amino acid biosynthesis and metabolism. QTL-seq was used to identify candidate genomic regions controlling flavor in a MAGIC population comprising 377 elite lines. Three significant genomic regions were identified, and candidate genes likely associated with flavor were screened. Our study provides useful information for understanding the metabolic causes of flavor variation among bottle gourd collections and cultivars. Furthermore, the identified candidate genomic regions may facilitate rational breeding programs to improve bottle gourd quality.

5.
Age Ageing ; 51(4)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35429270

RESUMEN

BACKGROUND: clinical trials dedicated to the older patients with cancer are essential to help to define optimal cancer therapy for this rapidly growing population. Our study aimed to analyse the characteristics and the evolution of older-patient-specific oncological trials registered in ClinicalTrials.gov. METHODS: a dataset of 61,120 oncological trials registered in ClinicalTrials.gov between 2000 and 2019 was downloaded. Characteristics of older-patient-specific trials were compared with characteristics of age-unspecified trials. Chronological shifts in older-patient-specific trials were also analysed. RESULTS: of the 49,273 interventional trials eligible for analysis, only 490 (1.0%) were older-patient-specific. More than half of the older-patient-specific trials were phase 2 and enrolled less than 100 patients. Compared with age-unspecified trials, older-patient-specific trials were less likely to be funded by industry (26.9 vs 37.1%), and more likely to be conducted in Europe (44.5 vs 28.3%). During the two time periods between 2000 and 2009, and 2010 and 2019, the proportion of supportive care-oriented trials increased from 1.9 to 13.9%. Concerningly, the use of clinically meaningful end points in older patients such as disease-specific survival, patient-reported outcomes and functional status as a primary end point was uncommon (0.4, 8.1 and 7.3%, respectively). There was no correlation between the number of trials for a given cancer type and relative incidence and mortality. 196/490 (40.0%) of the trials were conducted for patients with haematological cancer. CONCLUSION: our study helps us to better understand the current state of older-patient-specific oncological trials and provide insights for future development, resulting in the improvement of the care of older patients with cancer.


Asunto(s)
Oncología Médica , Neoplasias , Anciano , Estudios Transversales , Bases de Datos Factuales , Humanos , Neoplasias/terapia , Proyectos de Investigación
6.
Biomolecules ; 13(1)2022 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-36671470

RESUMEN

The OVATE gene family is a class of conserved transcription factors that play significant roles in plant growth, development, and abiotic stress, and also affect fruit shape in vegetable crops. Bottle gourd (Lagenaria siceraria), commonly known as calabash or gourd, is an annual climber belonging to the Cucurbitaceae family. Studies on bottle gourd OVATE genes are limited. In this study, we performed genome-wide identification of the OVATE gene family in bottle gourd, and identified a total of 20 OVATE family genes. The identified genes were unevenly distributed across 11 bottle gourd chromosomes. We also analyzed the gene homology, amino acid sequence conservation, and three-dimensional protein structure (via prediction) of the 20 OVATE family genes. We used RNA-seq data to perform expression analysis, which found 20 OVATE family genes to be differentially expressed based on spatial and temporal characteristics, suggesting that they have varying functions in the growth and development of bottle gourd. In situ hybridization and subcellular localization analysis showed that the expression characteristics of the LsOVATE1 gene, located on chromosome 7 homologous to OVATE, is a candidate gene for affecting the fruit shape of bottle gourd. In addition, RT-qPCR data from bottle gourd roots, stems, leaves, and flowers showed different spatial expression of the LsOVATE1 gene. The ectopic expression of LsOVATE1 in tomato generated a phenotype with a distinct fruit shape and development. Transgenic-positive plants that overexpressed LsOVATE1 had cone-shaped fruit, calyx hypertrophy, petal degeneration, and petal retention after flowering. Our results indicate that LsOVATE1 could serve important roles in bottle gourd development and fruit shape determination, and provide a basis for future research into the function of LsOVATE1.


Asunto(s)
Cucurbita , Cucurbitaceae , Cucurbitaceae/genética
7.
Front Plant Sci ; 12: 747940, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868131

RESUMEN

Germplasm collections are indispensable resources for the mining of important genes and variety improvement. To preserve and utilize germplasm collections in bottle gourd, we identified and validated a highly informative core single-nucleotide polymorphism (SNP) marker set from 1,100 SNPs. This marker set consisted of 22 uniformly distributed core SNPs with abundant polymorphisms, which were established to have strong representativeness and discriminatory power based on analyses of 206 bottle gourd germplasm collections and a multiparent advanced generation inter-cross (MAGIC) population. The core SNP markers were used to assess genetic diversity and population structure, and to fingerprint important accessions, which could provide an optimized procedure for seed authentication. Furthermore, using the core SNP marker set, we developed an accessible core population of 150 accessions that represents 100% of the genetic variation in bottle gourds. This core population will make an important contribution to the preservation and utilization of bottle gourd germplasm collections, cultivar identification, and marker-assisted breeding.

8.
Anal Chim Acta ; 1175: 338741, 2021 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-34330449

RESUMEN

8-oxoguanine DNA glycosylase (OGG), which plays a crucial role in base excision repair (BER), is an important biomarker. The existing highly sensitive fluorescent methods always need complicated amplification design. The method with high sensitivity and simple design at the same time is urgently needed. Here, we developed a highly sensitive detection method for OGG detection with lambda exonuclease and the background signal suppression probe. Through probe structure design, the steric hindrance and competitive binding effects successfully suppressed the background signal. We achieved sensitive detection of OGG with a simple design, and the limit of detection was 5.0 × 10-4 U mL-1. Moreover, the method was highly selective and successfully applied to OGG detection in biological samples, which shows the potential clinical application value.


Asunto(s)
ADN Glicosilasas , ADN Glicosilasas/metabolismo , Reparación del ADN , Guanina/análogos & derivados
9.
Neural Regen Res ; 8(36): 3441-8, 2013 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-25206667

RESUMEN

In this study, we loaded human umbilical cord mesenchymal stem cells onto human amniotic membrane with epithelial cells to prepare nerve conduits, i.e., a relatively closed nerve regeneration chamber. After neurolysis, the injured radial nerve was enwrapped with the prepared nerve conduit, which was fixed to the epineurium by sutures, with the cell on the inner surface of the conduit. Simultaneously, a 1.0 mL aliquot of human umbilical cord mesenchymal stem cell suspension was injected into the distal and proximal ends of the injured radial nerve with 1.0 cm intervals. A total of 1.75 × 10(7) cells were seeded on the amniotic membrane. In the control group, patients received only neurolysis. At 12 weeks after cell transplantation, more than 80% of patients exhibited obvious improvements in muscular strength, and touch and pain sensations. In contrast, these improvements were observed only in 55-65% of control patients. At 8 and 12 weeks, muscular electrophysiological function in the region dominated by the injured radial nerve was significantly better in the transplantation group than the control group. After cell transplantation, no immunological rejections were observed. These findings suggest that human umbilical cord mesenchymal stem cell-loaded amniotic membrane can be used for the repair of radial nerve injury.

10.
Proc Natl Acad Sci U S A ; 109(34): 13757-62, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22875704

RESUMEN

The rs1061170T/C variant encoding the Y402H change in complement factor H (CFH) has been identified by genome-wide association studies as being significantly associated with age-related macular degeneration (AMD). However, the precise mechanism by which this CFH variant impacts the risk of AMD remains largely unknown. Oxidative stress plays an important role in many aging diseases, including cardiovascular disease and AMD. A large amount of oxidized phospholipids (oxPLs) are generated in the eye because of sunlight exposure and high oxygen content. OxPLs bind to the retinal pigment epithelium and macrophages and strongly activate downstream inflammatory cascades. We hypothesize that CFH may impact the risk of AMD by modulating oxidative stress. Here we demonstrate that CFH binds to oxPLs. The CFH 402Y variant of the protective rs1061170 genotype binds oxPLs with a higher affinity and exhibits a stronger inhibitory effect on the binding of oxPLs to retinal pigment epithelium and macrophages. In addition, plasma from non-AMD subjects with the protective genotype has a lower level of systemic oxidative stress measured by oxPLs per apolipoprotein B (oxPLs/apoB). We also show that oxPL stimulation increases expression of genes involved in macrophage infiltration, inflammation, and neovascularization in the eye. OxPLs colocalize with CFH in drusen in the human AMD eye. Subretinal injection of oxPLs induces choroidal neovascularization in mice. In addition, we show that the CFH risk allele confers higher complement activation and cell lysis activity. Together, these findings suggest that CFH influences AMD risk by modulating oxidative stress, inflammation, and abnormal angiogenesis.


Asunto(s)
Factor H de Complemento/genética , Degeneración Macular/genética , Fosfolípidos/química , Anciano de 80 o más Años , Angiografía/métodos , Animales , Genotipo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Drusas del Disco Óptico/metabolismo , Oxígeno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA