Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Nutr Biochem ; 128: 109624, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518858

RESUMEN

Brain plasticity and cognitive functions are tightly influenced by foods or nutrients, which determine a metabolic modulation having a long-term effect on health, involving also epigenetic mechanisms. Breast milk or formula based on cow milk is the first food for human beings, who, throughout their lives, are then exposed to different types of milk. We previously demonstrated that rats fed with milk derived from distinct species, with different compositions and nutritional properties, display selective modulation of systemic metabolic and inflammatory profiles through changes of mitochondrial functions and redox state in liver, skeletal and cardiac muscle. Here, in a rat model, we demonstrated that isoenergetic supplementation of milk from cow (CM), donkey (DM) or human (HM) impacts mitochondrial functions and redox state in the brain cortex and cortical synapses, affecting neuroinflammation and synaptic plasticity. Interestingly, we found that the administration of different milk modulates DNA methylation in rat brain cortex and consequently affects gene expression. Our results emphasize the importance of nutrition in brain and synapse physiology, and highlight the key role played in this context by mitochondria, nutrient-sensitive organelles able to orchestrate metabolic and inflammatory responses.


Asunto(s)
Corteza Cerebral , Metilación de ADN , Leche , Mitocondrias , Sinapsis , Animales , Corteza Cerebral/metabolismo , Leche/química , Leche/metabolismo , Mitocondrias/metabolismo , Sinapsis/metabolismo , Ratas , Masculino , Plasticidad Neuronal , Enfermedades Neuroinflamatorias/metabolismo , Femenino , Ratas Wistar , Bovinos
2.
Antibiotics (Basel) ; 12(7)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37508306

RESUMEN

Nowadays, the increase in antimicrobial-resistant fungi (AMR) is certainly a major health concern, and the development of alternative therapeutic strategies has become crucial. Natural products have been used to treat various infections, and their chemical properties contribute to the performance of their biological activities, such as antifungal action. The various virulence factors and mechanisms of resistance to antifungals contribute to making Candida glabrata one of the most frequent agents of candidiasis. Here we investigate the in vitro and in vivo activity of ß-escin against Candida glabrata. The ß-escin MICs were determined for a reference strain and two clinical isolates of C. glabrata. Furthermore, growth kinetics assays and biofilm inhibition/eradication assays (crystal violet) were performed. The differences in the expression of some anti-biofilm-associated genes were analyzed during biofilm inhibition treatment so that reactive oxygen species could be detected. The efficacy of ß-escin was evaluated in combination with fluconazole, ketoconazole, and itraconazole. In addition, a Galleria mellonella infection model was used for in vivo treatment assays. Results have shown that ß-escin had no toxicity in vitro or in vivo and was able to inhibit or destroy biofilm formation by downregulating some important genes, inducing ROS activity and affecting the membrane integrity of C. glabrata cells. Furthermore, our study suggests that the combination with azoles can have synergistic effects against C. glabrata biofilm. In summary, the discovery of new antifungal drugs against these resistant fungi is crucial and could potentially lead to the development of future treatment strategies.

3.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37373098

RESUMEN

Cell identity is determined by the chromatin structure and profiles of gene expression, which are dependent on chromatin accessibility and DNA methylation of the regions critical for gene expression, such as enhancers and promoters. These epigenetic modifications are required for mammalian development and are essential for the establishment and maintenance of the cellular identity. DNA methylation was once thought to be a permanent repressive epigenetic mark, but systematic analyses in various genomic contexts have revealed a more dynamic regulation than previously thought. In fact, both active DNA methylation and demethylation occur during cell fate commitment and terminal differentiation. To link methylation signatures of specific genes to their expression profiles, we determined the methyl-CpG configurations of the promoters of five genes switched on and off during murine postnatal brain differentiation by bisulfite-targeted sequencing. Here, we report the structure of significant, dynamic, and stable methyl-CpG profiles associated with silencing or activation of the expression of genes during neural stem cell and brain postnatal differentiation. Strikingly, these methylation cores mark different mouse brain areas and cell types derived from the same areas during differentiation.


Asunto(s)
Metilación de ADN , Regulación de la Expresión Génica , Animales , Ratones , Islas de CpG , Epigénesis Genética , Diferenciación Celular/genética , Cromatina/genética , Mamíferos/genética
4.
Int J Mol Sci ; 25(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38203182

RESUMEN

Plastic pollution is an important environmental problem, and microplastics have been shown to have harmful effects on human and animal health, affecting immune and metabolic physiological functions. Further, microplastics can interfere with commensal microorganisms and exert deleterious effects on exposure to pathogens. Here, we compared the effects of 1 µm diameter polystyrene microplastic (PSMPs) on Candida albicans infection in both in vitro and in vivo models by using HT29 cells and Galleria mellonella larvae, respectively. The results demonstrated that PSMPs could promote Candida infection in HT29 cells and larvae of G. mellonella, which show immune responses similar to vertebrates. In this study, we provide new experimental evidence for the risk to human health posed by PSMPs in conjunction with Candida infections.


Asunto(s)
Candida albicans , Candidiasis , Animales , Humanos , Microplásticos/toxicidad , Plásticos/toxicidad , Poliestirenos/toxicidad , Larva
5.
Cancers (Basel) ; 14(14)2022 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-35884410

RESUMEN

A major challenge in the clinical management of prostate cancer (PC) is to inhibit tumor growth and prevent metastatic spreading. In recent years, considerable efforts have been made to discover new compounds useful for PC therapy, and promising advances in this field were reached. Drugs currently used in PC therapy frequently induce resistance and PC progresses toward metastatic castration-resistant forms (mCRPC), making it virtually incurable. Curcumin, a commercially available nutritional supplement, represents an attractive therapeutic agent for mCRPC patients. In the present study, we compared the effects of chemotherapeutic drugs such as docetaxel, paclitaxel, and cisplatin, to curcumin, on two PC cell lines displaying a different metastatic potential: DU145 (moderate metastatic potential) and PC-3 (high metastatic potential). Our results revealed a dose-dependent reduction of DU145 and PC-3 cell viability upon treatment with curcumin similar to chemotherapeutic agents (paclitaxel, cisplatin, and docetaxel). Furthermore, we explored the EGFR-mediated signaling effects on ERK activation in DU145 and PC-3 cells. Our results showed that DU145 and PC-3 cells overexpress EGFR, and the treatment with chemotherapeutic agents or curcumin reduced EGFR expression levels and ERK activation. Finally, chemotherapeutic agents and curcumin reduced the size of DU145 and PC-3 spheroids and have the potential to induce apoptosis and also in Matrigel. In conclusion, despite different studies being carried out to identify the potential synergistic curcumin combinations with chemopreventive/therapeutic efficacy for inhibiting PC growth, the results show the ability of curcumin used alone, or in combinatorial approaches, to impair the size and the viability of PC-derived spheroids.

6.
Front Microbiol ; 13: 1090197, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36687661

RESUMEN

The fraction of low-abundance microbiota in the marine environment is a promising target for discovering new bioactive molecules with pharmaceutical applications. Phenomena in the ocean such as diel vertical migration (DVM) and seasonal dynamic events influence the pattern of diversity of marine bacteria, conditioning the probability of isolation of uncultured bacteria. In this study, we report a new marine bacterium belonging to the rare biosphere, Leeuwenhoekiella parthenopeia sp. nov. Mr9T, which was isolated employing seasonal and diel sampling approaches. Its complete characterization, ecology, biosynthetic gene profiling of the whole genus Leeuwenhoekiella, and bioactivity of its extract on human cells are reported. The phylogenomic and microbial diversity studies demonstrated that this bacterium is a new and rare species, barely representing 0.0029% of the bacterial community in Mediterranean Sea metagenomes. The biosynthetic profiling of species of the genus Leeuwenhoekiella showed nine functionally related gene cluster families (GCF), none were associated with pathways responsible to produce known compounds or registered patents, therefore revealing its potential to synthesize novel bioactive compounds. In vitro screenings of L. parthenopeia Mr9T showed that the total lipid content (lipidome) of the cell membrane reduces the prostatic and brain tumor cell viability with a lower effect on normal cells. The lipidome consisted of sulfobacin A, WB 3559A, WB 3559B, docosenamide, topostin B-567, and unknown compounds. Therefore, the bioactivity could be attributed to any of these individual compounds or due to their synergistic effect. Beyond the rarity and biosynthetic potential of this bacterium, the importance and novelty of this study is the employment of sampling strategies based on ecological factors to reach the hidden microbiota, as well as the use of bacterial membrane constituents as potential novel therapeutics. Our findings open new perspectives on cultivation and the relationship between bacterial biological membrane components and their bioactivity in eukaryotic cells, encouraging similar studies in other members of the rare biosphere.

7.
Oxid Med Cell Longev ; 2021: 6874146, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630851

RESUMEN

The association between diabetes and cardiovascular diseases is well known. Related diabetes macro- and microangiopathies frequently induce hypoxia and consequently energy failure to satisfy the jeopardized myocardium basal needs. Additionally, it is widely accepted that diabetes impairs endothelial nitric oxide synthase (eNOS) activity, resulting in diminished nitric oxide (NO) bioavailability and consequent endothelial cell dysfunction. In this study, we analyzed the embryonic heart-derived H9c2 cell response to hypoxic stress after administration of a high glucose concentration to reproduce a condition often observed in diabetes. We observed that 24 h hypoxia exposure of H9c2 cells reduced cell viability compared to cells grown in normoxic conditions. Cytotoxicity and early apoptosis were increased after exposure to high glucose administration. In addition, hypoxia induced a RhoA upregulation and a Bcl-2 downregulation and lowered the ERK activation observed in normoxia at both glucose concentrations. Furthermore, a significant cell proliferation rate increases after the 1400 W iNOS inhibitor administration was observed. Again, hypoxia increased the expression level of myogenin, a marker of skeletal muscle cell differentiation. The cardiomyocyte gene expression profiles and morphology changes observed in response to pathological stimuli, as hypoxia, could lead to improper ventricular remodeling responsible for heart failure. Therefore, understanding cell signaling events that regulate cardiac response to hypoxia could be useful for the discovery of novel therapeutic approaches able to prevent heart diseases.


Asunto(s)
Hipoxia de la Célula/efectos de los fármacos , Glucosa/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Amidinas/farmacología , Animales , Apoptosis/efectos de los fármacos , Bencilaminas/farmacología , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Glucosa/metabolismo , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Proteínas de Unión al GTP rho/metabolismo
8.
Materials (Basel) ; 14(13)2021 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-34279306

RESUMEN

In oral implantology, the success and persistence of dental implants over time are guaranteed by the bone formation around the implant fixture and by the integrity of the peri-implant mucosa seal, which adheres to the abutment and becomes a barrier that hinders bacterial penetration and colonization close to the outer parts of the implant. Research is constantly engaged in looking for substances to coat the titanium surface that guarantees the formation and persistence of the peri-implant bone, as well as the integrity of the mucous perimeter surrounding the implant crown. The present study aimed to evaluate in vitro the effects of a titanium surface coated with polylysine homopolymers on the cell growth of dental pulp stem cells and keratinocytes to establish the potential clinical application. The results reported an increase in cell growth for both cellular types cultured with polylysine-coated titanium compared to cultures without titanium and those without coating. These preliminary data suggest the usefulness of polylysine coating not only for enhancing osteoinduction but also to speed the post-surgery mucosal healings, guarantee appropriate peri-implant epithelial seals, and protect the fixture against bacterial penetration, which is responsible for compromising the implant survival.

9.
Stem Cells Int ; 2020: 8835813, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101420

RESUMEN

Beer is one of the most consumed alcoholic beverages in the world, rich in chemical compounds of natural origin with high nutritional and biological value. It is made up of water, barley malt, hops, and yeast. The main nutrients are carbohydrates, amino acids, minerals, vitamins, and other compounds such as polyphenols which are responsible for the many health benefits associated with this consumption of drinks. Hops and malt are one of the raw materials for beer and are a source of phenolic compounds. In fact, about 30% of the polyphenols in beer comes from hops and 70%-80% from malt. Natural compounds of foods or plants exert an important antioxidant activity, counteracting the formation of harmful free radicals. In the presence of an intense stressing event, cells activate specific responses to counteract cell death or senescence which is known to act as a key-task in the onset of age-related pathologies and in the loss of tissue homeostasis. Many studies have shown positive effects of natural compounds as beer polyphenols on biological systems. The main aims of our research were to determine the polyphenolic profile of three fractions, coming from stages of beer production, the mashing process (must), the filtration process (prehopping solution), and the boiling process with the addition of hops (posthopping solution), and to evaluate the effects of these fractions on Dental-derived Stem Cells (D-dSCs) and human intestinal epithelial lines (Caco-2 cells). Furthermore, we underline the bioavailability of beer fraction polyphenols by carrying out the in vitro intestinal absorption using the Caco-2 cell model. We found an antioxidant, proliferating, and antisenescent effects of the fractions deriving from the brewing process on D-dSCs and Caco-2 cells. Finally, our results demonstrated that the bioavailability of polyphenols is greater in beer than in the control standards used, supporting the future clinical application of these compounds as potential therapeutic tools in precision and translational medicine.

10.
Int J Mol Sci ; 21(17)2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32825330

RESUMEN

The estrogen receptor (ER) signaling regulates numerous physiological processes mainly through activation of gene transcription (genomic pathways). Caveolin1 (CAV1) is a membrane-resident protein that behaves as platform to enable different signaling molecules and receptors for membrane-initiated pathways. CAV1 directly interacts with ERs and allows their localization on membrane with consequent activation of ER-non-genomic pathways. Loss of CAV1 function is a common feature of different types of cancers, including breast cancer. Two protein isoforms, CAV1α and CAV1ß, derived from two alternative translation initiation sites, are commonly described for this gene. However, the exact transcriptional regulation underlying CAV1 expression pattern is poorly elucidated. In this study, we dissect the molecular mechanism involved in selective expression of CAV1ß isoform, induced by estrogens and downregulated in breast cancer. Luciferase assays and Chromatin immunoprecipitation demonstrate that transcriptional activation is triggered by estrogen-responsive elements embedded in CAV1 intragenic regions and DNA-binding of estrogen-ER complexes. This regulatory control is dynamically established by local chromatin changes, as proved by the occurrence of histone H3 methylation/demethylation events and association of modifier proteins as well as modification of H3 acetylation status. Thus, we demonstrate for the first time, an estrogen-ERs-dependent regulatory circuit sustaining selective CAV1ß expression.


Asunto(s)
Neoplasias de la Mama/genética , Caveolina 1/genética , Elementos de Respuesta , Adulto , Anciano , Línea Celular Tumoral , Estradiol/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Histonas/genética , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilación , Persona de Mediana Edad , Receptores de Estrógenos/genética , Elementos de Respuesta/efectos de los fármacos , Elementos de Respuesta/genética
11.
J Oncol ; 2020: 9587971, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32684934

RESUMEN

Oral cancers have been proven to arise from precursors lesions and to be related to risk behaviour such as alcohol consumption and smoke. However, the present paper focuses on the role of chronic inflammation, related to chronical oral infections and/or altered immune responses occurring during dysimmune and autoimmune diseases, in the oral cancerogenesis. Particularly, oral candidiasis and periodontal diseases introduce a vicious circle of nonhealing and perpetuation of the inflammatory processes, thus leading toward cancer occurrence via local and systemic inflammatory modulators and via genetic and epigenetic factors.

12.
Cancer Biol Ther ; 21(8): 667-674, 2020 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-26218314

RESUMEN

Epithelial-Mesenchymal Transition (EMT) and angiogenesis are crucial events for development of aggressive and often fatal Oral Squamous Cell Carcinomas (OSCCs). Both promote cancer progression and metastasis development, but while the former induces the loss of E-cadherin expression and, hence cadherin switching; the latter produces hematic blood vessel neo-formation and contribute to OSCC cell growth, tumor mass development, and dissemination. Cyclooxygenase-2 (COX-2) has an important role, not only in angiogenic mechanisms, but also in favoring cancer invasion. Indeed it decreases the expression of E-cadherin and leads to phenotypic changes in epithelial cells (EMT) enhancing their carcinogenic potential. Our aim is to evaluate the interplay between E-cadherin cytoplasmic delocalization, COX-2 up-regulation and COX-2 induced neo-angiogenesis in 120 cases of OSCC. We have analyzed the distribution and the number of neo-formed endothelial buds surrounding infiltrating cells that express COX-2, as well as the neo-formed vessels in chronic inflammatory infiltrate, which surround the tumor. A double immunostaining method was employed in order to verify co-localization of endothelial cell marker (CD34) and COX-2. IHC has also been used to assess E-cadherin expression. Our data demonstrate that the OSCC cells, which lose membranous E-cadherin staining, acquiring a cytoplasmic delocalization, overexpress COX-2. Moreover, we find a new CD34+ vessel formation (sprouting angiogenesis). Only basaloid type of OSCC showes low level of COX-2 expression together with very low level of neo-angiogenesis and consequent tumor necrosis. The well-known anti-metastatic effect of certain COX-2 inhibitors suggests that these molecules might have clinical utility in the management of advanced cancers.


Asunto(s)
Cadherinas/metabolismo , Carcinoma de Células Escamosas/genética , Ciclooxigenasa 2/metabolismo , Neoplasias de la Boca/genética , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Células Escamosas/patología , Humanos , Persona de Mediana Edad , Neoplasias de la Boca/patología , Microambiente Tumoral
13.
Cancer Biol Ther ; 19(10): 850-857, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28362190

RESUMEN

Human Papilloma Virus infection is very frequent in humans and is mainly transmitted sexually. The majority of infections are transient and asymptomatic, however, if the infection persists, it can occur with a variety of injuries to skin and mucous membranes, depending on the type of HPV involved. Some types of HPV are classified as high oncogenic risk as associated with the onset of cancer. The tumors most commonly associated with HPV are cervical and oropharyngeal cancer, epigenetic mechanisms related to HPV infection include methylation changes to host and viral DNA and chromatin modification in host species. This review is focused about epigenethic mechanism, such as MiRNAs expression, related to cervix and oral cancer. Specifically it discuss about molecular markers associated to a more aggressive phenotype. In this way we will analyze genes involved in meiotic sinaptonemal complex, transcriptional factors, of orthokeratins, sinaptogirin, they are all expressed in cancer in a way not more dependent on cell differentiation but HPV-dependent.


Asunto(s)
ADN Viral , Epigénesis Genética , Papillomaviridae/genética , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/virología , Neoplasias del Cuello Uterino/etiología , Transformación Celular Neoplásica , Susceptibilidad a Enfermedades , Femenino , Regulación de la Expresión Génica , Genes Virales , Interacciones Huésped-Patógeno , Humanos , MicroARNs
14.
Microbiology (Reading) ; 163(5): 654-663, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28535856

RESUMEN

Chlamydia trachomatis is the most prevalent infection of the genital tract in women worldwide. C. trachomatis has a tendency to cause persistent infection and induce a state of chronic inflammation, which has been reported to play a role in carcinogenesis. We report that persistent C. trachomatis infection increases the expression of inflammatory tumour cytokines and upregulates molecular biomarkers such as podoplanin, Wilms' tumour gene 1 and osteopontin in primary cultures of mesothelial cells (Mes1) and human mesothelioma cells (NCI). Infection experiments showed that Mes1 and NCI supported the growth of C. trachomatisin vitro, and at an m.o.i. of 4, the inclusion-forming units/cell showed many intracellular inclusion bodies after 3 days of infection. However, after 7 days of incubation, increased proliferative and invasive activity was also observed in Mes1 cells, which was more evident after 14 days of incubation. ELISA analysis revealed an increase in vascular endothelial growth factor, IL-6, IL-8, and TNF-α release in Mes1 cells infected for a longer period (14 days). Finally, real-time PCR analysis revealed a strong induction of podoplanin, Wilms' tumour gene 1 and osteopontin gene expression in infected Mes1 cells. The aim of the present study was to investigate the inflammatory response elicited by C. trachomatis persistent infection and the role played by inflammation in cell proliferation, secretion of proinflammatory cytokines and molecular biomarkers of cancer. The results of this study suggest that increased molecular biomarkers of cancer by persistent inflammation from C. trachomatis infection might support cellular transformation, thus increasing the risk of cancer.


Asunto(s)
Chlamydia trachomatis/inmunología , Citocinas/biosíntesis , Células Epiteliales/metabolismo , Glicoproteínas de Membrana/biosíntesis , Mesotelioma/patología , Proteínas Nucleares/biosíntesis , Osteopontina/biosíntesis , Proteínas de Ciclo Celular , Línea Celular Tumoral , Proliferación Celular/fisiología , Infecciones por Chlamydia/microbiología , Infecciones por Chlamydia/patología , Epitelio/metabolismo , Células HeLa , Humanos , Inflamación/inmunología , Invasividad Neoplásica/patología , Factores de Empalme de ARN
15.
J Cell Physiol ; 232(1): 69-77, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27363538

RESUMEN

Obesity is characterized by a disruption in energy balance regulation that results in an excess accumulation of body fat. Its increasing prevalence poses a major public health concern because it is a risk factor for a host of additional chronic conditions, including type 2 diabetes, hypertension, and cardiovascular disease. Obesity is increasingly recognized as a growing cause of cancer risk. In particular excessive adipose expansion during obesity causes adipose dysfunction and inflammation that can regulate tumor growth. In obesity, dysregulated systemic metabolism and inflammation induce hyperinsulinemia, hyperglycemia, dyslipidemia, and enhance sex hormone production with increased secretion of proinflammatory adipokine that impact breast cancer development and progression. This review describes how adipose inflammation that characterizes obesity is responsible of microenvironment to promote cancer, and discuss how steroid hormones, that are essential for the maintenance of the normal development, growth and differentiation of the cells, influence the induction and progression of breast cancer. J. Cell. Physiol. 232: 69-77, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Tejido Adiposo/metabolismo , Neoplasias de la Mama/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético/fisiología , Resistencia a la Insulina/fisiología , Obesidad/metabolismo , Animales , Neoplasias de la Mama/complicaciones , Neoplasias de la Mama/genética , Diabetes Mellitus Tipo 2/complicaciones , Humanos , Obesidad/complicaciones
16.
Interact Cardiovasc Thorac Surg ; 22(4): 411-8, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26769731

RESUMEN

OBJECTIVES: The aim of the present study was to evaluate the diagnostic accuracy of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in differentiating benign from malignant exudative pleural effusions. METHODS: This is a unicentre observational study including 97 consecutive patients with exudative pleural effusions. Metalloproteinase-9, tissue inhibitor of metalloproteinase-1, lactate dehydrogenase, ferritin, carcinoembryonic antigen and carbohydrate antigen 15-3 were measured in pleural effusion and serum by enzyme-linked immunosorbent assay. The activity of metalloproteinase-9 was also evaluated by substrate zymography. The data were correlated with final diagnosis of pleural effusions to evaluate the diagnostic accuracy. RESULTS: Of the 97 eligible patients, 6 were excluded. Of the 91 patients included in the study, 70 had malignant pleural effusions and 21 had benign pleural effusions. Both in sera and pleural effusions, matrix metalloproteinase-9 (P < 0.0001), tissue inhibitor of metalloproteinase-1 (P < 0.0001) and carcinoembryonic antigen (P < 0.0001) levels were higher in neoplastic patients than in benign group. Zymography analysis showed a most prominent band at a molecular weight of 92 kDa (metalloproteinase-9) whereas a less intense band was observed at 72 kDa (metalloproteinase-2). A significant correlation was found between metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 levels in pleural effusion (P < 0.0001; r = 0.8) and serum (P < 0.03; r = 0.2). Pleural effusion metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 levels showed higher value of sensitivity (97 and 91%, respectively) and specificity (90 and 95%, respectively) compared with other standard markers. Serum metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 levels showed similar results. Among 70 neoplastic patients, 29 had negative pleural cytology. Of these, 25 presented elevated levels of metalloproteinase-9 and tissue inhibitor of metalloproteinase-1, whereas 4 patients had elevated levels of one of the two markers. CONCLUSIONS: Our results showed that metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 might be valuable markers in differentiating benign from malignant pleural effusions. Their levels are neither influenced by the histology and tumour origin nor by the presence of tumour cells in pleural effusions. Thus, their use in clinical practice could help in the selection of patients needing more invasive procedures, such as thoracoscopic biopsy.


Asunto(s)
Biomarcadores de Tumor/sangre , Metaloproteinasa 9 de la Matriz/sangre , Derrame Pleural Maligno/sangre , Inhibidor Tisular de Metaloproteinasa-1/sangre , Anciano , Área Bajo la Curva , Diagnóstico Diferencial , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Italia , Masculino , Persona de Mediana Edad , Derrame Pleural Maligno/diagnóstico , Derrame Pleural Maligno/enzimología , Derrame Pleural Maligno/etiología , Valor Predictivo de las Pruebas , Curva ROC , Reproducibilidad de los Resultados
17.
J Cell Biochem ; 117(4): 828-35, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26479787

RESUMEN

Proteomics is a recent field of research in molecular biology that can help in the fight against cancer through the search for biomarkers that can detect this disease in the early stages of its development. Proteomic is a speedily growing technology, also thanks to the development of even more sensitive and fast mass spectrometry analysis. Although this technique is the most widespread for the discovery of new cancer biomarkers, it still suffers of a poor sensitivity and insufficient reproducibility, essentially due to the tumor heterogeneity. Common technical shortcomings include limitations in the sensitivity of detecting low abundant biomarkers and possible systematic biases in the observed data. Current research attempts are trying to develop high-resolution proteomic instrumentation for high-throughput monitoring of protein changes that occur in cancer. In this review, we describe the basic features of the proteomic tools which have proven to be useful in cancer research, showing their advantages and disadvantages. The application of these proteomic tools could provide early biomarkers detection in various cancer types and could improve the understanding the mechanisms of tumor growth and dissemination.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Pulmonares/diagnóstico , Proteínas de Neoplasias/genética , Neoplasias Ováricas/diagnóstico , Neoplasias Pancreáticas/diagnóstico , Proteómica/métodos , Biomarcadores de Tumor/sangre , Femenino , Expresión Génica , Humanos , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Proteínas de Neoplasias/sangre , Neoplasias Ováricas/sangre , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Neoplasias Pancreáticas/sangre , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Proteómica/instrumentación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Investigación Biomédica Traslacional
18.
PLoS One ; 10(8): e0135331, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26262875

RESUMEN

Pleural malignant mesothelioma (MPM) is a detrimental neoplasm affecting pleural sheets and determining a high rate of mortality. In this study, we have enrolled 14 consecutive patients (13 males and 1 female) with MPM (mean age: 70.3 ± 4.6 years). We have collected serum for the determination of a miRNA profiling using a low-density microarray real time PCR system in the serum of patients and comparing it with that one of 10 control counterparts affected by not-cancer-related pleural effusions. In the patients 5 miRNAs were up-regulated (miR101, miR25, miR26b, miR335 and miR433), 2 miRNA were downregulated (miR191, miR223) and two miRNAs were expressed exclusively in patients (miR29a and miR516). Based upon the changes in the expression of the above mentioned miRNAs we detected two distinctive miRNA signatures predicting histotype and survival in these patients: I) patients with more than 3/9 upregulated miRNAs or 3/9 upregulated miRNAs and miR516 not recordable or unchanged (signature A); II) patients with at least 3/9 downregulated or unchanged miRNAs and/or miR29a downregulated (signature B). Based upon these criteria, 5 patients were stratified in signature A and the remaining 9 in signature B. Patients with signature A had a significant shorter median survival than those with signature B (7 months vs. 17 months, 95% CI: 0.098-1.72, p = 0.0021), had a sarcomatoid or mixed histological MPM subtype and were diagnosed in stage II (3/5) and stage III (2/5). In conclusion, we suggest that miRNA signature A is predictive of sarcomatoid histotype and of worse prognosis in MPM.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidad , Mesotelioma/genética , Mesotelioma/mortalidad , MicroARNs/genética , Neoplasias Pleurales/genética , Neoplasias Pleurales/mortalidad , Anciano , Biomarcadores de Tumor , Femenino , Perfilación de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Neoplasias Pulmonares/patología , Masculino , Mesotelioma/patología , Mesotelioma Maligno , MicroARNs/sangre , Persona de Mediana Edad , Estadificación de Neoplasias , Neoplasias Pleurales/patología , Pronóstico
19.
Int J Occup Med Environ Health ; 28(5): 841-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26224496

RESUMEN

OBJECTIVES: We examined the prevalence of latex allergy in subjects with occupational exposure to latex allergens for less than 5 years, determining the disease spectrum in symptomatic workers. We identified the most frequent molecular allergens by Immuno- CAP (ICAP), correlating the findings with skin prick test (SPT) results. MATERIAL AND METHODS: Seven hundred twenty-three healthcare students using latex gloves on a regular basis were invited to participate in a baseline questionnaire screening. An ICAP serum test was performed only when a possible latex allergy was indicated by the questionnaire. RESULTS: The total number of participants responding to the baseline survey was 619. Glove-related symptoms were indicated by 4% (N = 25) of the students. The most common symptom was contact dermatitis (N = 18, 72%). In 12 subjects, ICAP revealed a real sensitization to latex, with a recombinant latex allergen profile showing a high frequency for rHev b 6.01 specific immunoglobulin E (sIgE) (N = 9, 67%). In these individuals, skin symptoms were more prevalent than other types (88%). CONCLUSIONS: The combined positivity for rHev b 6.01, rHev 8 and rHev b 5 determined by ICAP identified 92% of latex-allergic subjects with short-term exposure to latex.


Asunto(s)
Guantes Protectores/efectos adversos , Personal de Salud , Hipersensibilidad al Látex/epidemiología , Látex/análisis , Enfermedades Profesionales/epidemiología , Exposición Profesional/análisis , Femenino , Humanos , Italia/epidemiología , Látex/efectos adversos , Hipersensibilidad al Látex/inducido químicamente , Masculino , Enfermedades Profesionales/inducido químicamente , Exposición Profesional/efectos adversos , Prevalencia , Adulto Joven
20.
J Cell Physiol ; 230(4): 802-5, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25205458

RESUMEN

pRb2/p130 is a key tumor suppressor, whose oncosuppressive activity has mainly been attributed to its ability to negatively regulate cell cycle by interacting with the E2F4 and E2F5 transcription factors. Indeed, pRb2/p130 has been found altered in various cancer types in which it functions as a valuable prognostic marker. Here, we analyzed pRb2/p130 expression in gastric cancer tissue samples of diffuse histotype, in comparison with their normal counterparts. We found a cytoplasmic localization of pRb2/p130 in cancer tissue samples, whereas, in normal counterparts, we observed the expected nuclear localization. pRb2/p130 cytoplasmic delocalization can lead to cell cycle deregulation, but considering the emerging involvement of pRb2/p130 in other key cellular processes, it could contribute to gastric tumorigenesis also through other mechanisms. Our data support the necessity of further investigations to verify the possibility of using pRb2/p130 as a biomarker or potential therapeutic target for diffuse gastric cancer.


Asunto(s)
Proteína Sustrato Asociada a CrK/metabolismo , Citoplasma/metabolismo , Proteínas Salivales Ricas en Prolina/metabolismo , Neoplasias Gástricas/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Ciclo Celular/metabolismo , División Celular/genética , División Celular/fisiología , Femenino , Genes Supresores de Tumor/fisiología , Humanos , Masculino , Fosfoproteínas/fisiología , Proteína de Retinoblastoma/metabolismo , Proteína p130 Similar a la del Retinoblastoma/metabolismo , Neoplasias Gástricas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA