RESUMEN
In this chapter, we review the extensive literature describing the roles of the subfornical organ (SFO), the organum vasculosum of the terminalis (OVLT), and the median preoptic nucleus (MnPO), comprising the lamina terminalis, in cardiovascular regulation and the control of fluid balance. We present this information in the context of both historical and technological developments which can effectively be overlaid upon each other. We describe intrinsic anatomy and connectivity and then discuss early work which described how circulating angiotensin II acts at the SFO to stimulate drinking and increase blood pressure. Extensive studies using direct administration and lesion approaches to highlight the roles of all regions of the lamina terminalis are then discussed. At the cellular level we describe c-Fos and electrophysiological work, which has highlighted an extensive group of circulating hormones which appear to influence the activity of specific neurons in the SFO, OVLT, and MnPO. We highlight optogenetic studies that have begun to unravel the complexities of circuitries underlying physiological outcomes, especially those related to different components of drinking. Finally, we describe the somewhat limited human literature supporting conclusions that these structures play similar and potentially important roles in human physiology.
Asunto(s)
Organum Vasculosum , Órgano Subfornical , Humanos , Hipotálamo , Área Preóptica , Equilibrio HidroelectrolíticoRESUMEN
In addition to maintaining cellular ER Ca2+ stores, store-operated Ca2+ entry (SOCE) regulates several Ca2+-sensitive cellular enzymes, including certain adenylyl cyclases (ADCYs), enzymes that synthesize the secondary messenger cyclic AMP (cAMP). Ca2+, acting with calmodulin, can also increase the activity of PDE1-family phosphodiesterases (PDEs), which cleave the phosphodiester bond of cAMP. Surprisingly, SOCE-regulated cAMP signaling has not been studied in cells expressing both Ca2+-sensitive enzymes. Here, we report that depletion of ER Ca2+ activates PDE1C in human arterial smooth muscle cells (HASMCs). Inhibiting the activation of PDE1C reduced the magnitude of both SOCE and subsequent Ca2+/calmodulin-mediated activation of ADCY8 in these cells. Because inhibiting or silencing Ca2+-insensitive PDEs had no such effects, these data identify PDE1C-mediated hydrolysis of cAMP as a novel and important link between SOCE and its activation of ADCY8. Functionally, we showed that PDE1C regulated the formation of leading-edge protrusions in HASMCs, a critical early event in cell migration. Indeed, we found that PDE1C populated the tips of newly forming leading-edge protrusions in polarized HASMCs, and co-localized with ADCY8, the Ca2+ release activated Ca2+ channel subunit, Orai1, the cAMP-effector, protein kinase A, and an A-kinase anchoring protein, AKAP79. Because this polarization could allow PDE1C to control cAMP signaling in a hyper-localized manner, we suggest that PDE1C-selective therapeutic agents could offer increased spatial specificity in HASMCs over agents that regulate cAMP globally in cells. Similarly, such agents could also prove useful in regulating crosstalk between Ca2+/cAMP signaling in other cells in which dysregulated migration contributes to human pathology, including certain cancers.
Asunto(s)
Arterias/citología , Calcio/metabolismo , AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/metabolismo , Células Musculares/citología , Transducción de Señal , Transporte Biológico , Movimiento Celular , Regulación Enzimológica de la Expresión Génica , Humanos , CinéticaRESUMEN
Phoenixin (PNX) is a neuropeptide shown to play roles in the control of reproduction. The nucleus of the solitary tract (NTS), a critical autonomic integrating centre in the hindbrain, is one of many areas with dense expression of PNX. Using coronal NTS slices obtained from male Sprague-Dawley rats, the present study characterised the effects of PNX on both spike frequency and membrane potential of NTS neurones. Extracellular recordings demonstrated that bath-applied 10 nmol L-1 PNX increased the firing frequency in 32% of NTS neurones, effects which were confirmed with patch-clamp recordings showing that 50% of NTS neurones tested depolarised in response to application of the peptide. Surprisingly, the responsiveness to PNX in NTS neurones then declined suddenly to 9% (P < 0.001). This effect was subsequently attributed to stress associated with construction in our animal care facility because PNX responsiveness was again observed in slices from rats delivered and maintained in a construction-free facility. We then examined whether this loss of PNX responsiveness could be replicated in rats placed on a chronic stress regimen involving ongoing corticosterone (CORT) treatment in the construction-free facility. Slices from animals treated in this way showed a similar lack of neuronal responsiveness to PNX (9.1 ± 3.9%) within 2 weeks of CORT treatment. These effects were specific to PNX responsiveness because CORT treatment had no effect on the responsiveness of NTS neurones to angiotensin II. These results are the first to implicate PNX with respect to directly controlling the excitability of NTS neurones and also provide intriguing data showing the plasticity of these effects associated with environmental and glucocorticoid stress levels of the animal.
Asunto(s)
Microambiente Celular , Glucocorticoides/efectos adversos , Neuronas/efectos de los fármacos , Hormonas Peptídicas/farmacología , Núcleo Solitario/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Microambiente Celular/efectos de los fármacos , Microambiente Celular/fisiología , Estimulación Eléctrica , Fenómenos Electrofisiológicos/efectos de los fármacos , Masculino , Potenciales de la Membrana/efectos de los fármacos , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley , Núcleo Solitario/citología , Núcleo Solitario/fisiología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/fisiologíaRESUMEN
Ghrelin is a peptide mainly produced and secreted by the stomach. Since its discovery, the impact of ghrelin on the regulation of food intake has been the most studied function of this hormone; however, ghrelin affects a wide range of physiological systems, many of which are controlled by the hypothalamic paraventricular nucleus (PVN). Several pathways may mediate the effects of ghrelin on PVN neurons, such as direct or indirect effects mediated by circumventricular organs and/or the arcuate nucleus. The ghrelin receptor is expressed in PVN neurons, and the peripheral or intracerebroventricular administration of ghrelin affects PVN neuronal activity. Intra-PVN application of ghrelin increases food intake and decreases fat oxidation, which chronically contribute to the increased adiposity. Additionally, ghrelin modulates the neuroendocrine axes controlled by the PVN, increasing the release of vasopressin and oxytocin by magnocellular neurons and corticotropin-releasing hormone by neuroendocrine parvocellular neurons, while possibly inhibiting the release of thyrotropin-releasing hormone. Thus, the PVN is an important target for the actions of ghrelin. Our review discusses the mechanisms of ghrelin actions in the PVN, and its potential implications for energy balance, neuroendocrine, and integrative physiological control.
Asunto(s)
Ghrelina/fisiología , Núcleo Hipotalámico Paraventricular/fisiología , Animales , Metabolismo Energético , HumanosRESUMEN
The subfornical organ (SFO) lacks the normal blood-brain barrier and senses the concentrations of many different circulating signals, including glucose and angiotensin II (ANG II). ANG II has recently been implicated in the control of food intake and body weight gain. The present study assessed whether single SFO neurones sense changes in glucose and ANG II, and also whether changes in glucose concentration alter the responsiveness of these neurones to ANG II. SFO neurones dissociated from male Sprague-Dawley rats (100-175 g) were used. We first examined whether glucose concentration modulates AT1 receptor expression. Similar AT1a mRNA expression levels were found at glucose concentrations of 1, 5 and 10 mmol L-1 in dissociated SFO neurones. Glucose responsiveness of SFO neurones was assessed using perforated current-clamp recordings and switching between 5 and 10 mmol L-1 glucose artificial cerebrospinal fluid to classify single neurones as nonresponsive (nGS), glucose-excited (GE) or glucose-inhibited (GI). In total, 26.7% of the SFO neurones were GI (n = 24 of 90), 21.1% were GE (n = 19 of 90) and 52.2% were nGS (n = 47 of 90). Once classified, the effects of 10 nmol L-1 ANG II on the excitability of these neurones were tested, with 52% of GE (n = 10 of 19), 71% of GI (n = 17 of 24) and 43% of nGS (n = 20 of 47) neurones being ANG II sensitive. Finally, we tested whether acute changes in glucose concentration modified the response to ANG II and showed that some neurones (4/17) only respond to ANG II at 10 mmol L-1 glucose. Our data demonstrate that the same SFO neurone can sense glucose and ANG II and that acute changes in glucose concentration may change ANG II responsiveness.
Asunto(s)
Angiotensina II/farmacología , Glucosa/metabolismo , Glucosa/farmacología , Órgano Subfornical/efectos de los fármacos , Órgano Subfornical/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Masculino , Potenciales de la Membrana/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Ratas , Receptor de Angiotensina Tipo 1/biosíntesis , Órgano Subfornical/citologíaRESUMEN
The paraventricular nucleus (PVN) is involved in the control of sympathetic tone and the secretion of hormones, both functions known to be influenced by ghrelin, suggesting direct effect of ghrelin in this nucleus. However, the effects of ghrelin on the excitability of different PVN neuronal populations have not been demonstrated. This study assessed the effects of ghrelin on the activity of PVN neurons, correlating the responses to subpopulations of PVN neurons. We used a 64 multielectrode array to examine the effects of ghrelin administration on extracellular spike frequency in PVN neurons recorded in brain slices obtained from male Sprague-Dawley rats. Bath administration of 10 nM ghrelin increased (29/97, 30%) or decreased (37/97, 38%) spike frequency in PVN neurons. The GABAA and glutamate receptors antagonists abolish the decrease in spike frequency, without changes in the proportion of increases in spike frequency (23/53, 43%) induced by ghrelin. The results indicate a direct effect of ghrelin increasing PVN neurons activity and a synaptic dependent effect decreasing PVN neurons activity. The patch clamp recordings showed similar proportions of PVN neurons influenced by 10 nM ghrelin (33/95, 35% depolarized; 29/95, 30% hyperpolarized). Using electrophysiological fingerprints to identify specific subpopulations of PVN neurons we observed that the majority of pre-autonomic neurons (11/18 -61%) were depolarized by ghrelin, while both neuroendocrine (29% depolarizations, 40% hyperpolarizations), and magnocellular neurons (29% depolarizations, 21% hyperpolarizations) showed mixed responses. Finally, to correlate the electrophysiological response and the neurochemical phenotype of PVN neurons, cell cytoplasm was collected after recordings and RT-PCR performed to assess the presence of mRNA for vasopressin, oxytocin, thyrotropin (TRH) and corticotropin (CRH) releasing hormones. The single-cell RT-PCR showed that most TRH-expressing (4/5) and CRH-expressing (3/4) neurons are hyperpolarized in response to ghrelin. In conclusion, ghrelin either directly increases or indirectly decreases the activity of PVN neurons, this suggests that ghrelin acts on inhibitory PVN neurons that, in turn, decrease the activity of TRH-expressing and CRH-expressing neurons in the PVN.
RESUMEN
Subfornical organ (SFO) neurons exhibit heterogeneity in current expression and spiking behavior, where the two major spiking phenotypes appear as tonic and burst firing. Insight into the mechanisms behind this heterogeneity is critical for understanding how the SFO, a sensory circumventricular organ, integrates and selectively influences physiological function. To integrate efficient methods for studying this heterogeneity, we built a single-compartment, Hodgkin-Huxley-type model of an SFO neuron that is parameterized by SFO-specific in vitro patch-clamp data. The model accounts for the membrane potential distribution and spike train variability of both tonic and burst firing SFO neurons. Analysis of model dynamics confirms that a persistent Na+ and Ca2+ currents are required for burst initiation and maintenance and suggests that a slow-activating K+ current may be responsible for burst termination in SFO neurons. Additionally, the model suggests that heterogeneity in current expression and subsequent influence on spike afterpotential underlie the behavioral differences between tonic and burst firing SFO neurons. Future use of this model in coordination with single neuron patch-clamp electrophysiology provides a platform for explaining and predicting the response of SFO neurons to various combinations of circulating signals, thus elucidating the mechanisms underlying physiological signal integration within the SFO. NEW & NOTEWORTHY Our understanding of how the subfornical organ (SFO) selectively influences autonomic nervous system function remains incomplete but theoretically results from the electrical responses of SFO neurons to physiologically important signals. We have built a computational model of SFO neurons, derived from and supported by experimental data, which explains how SFO neurons produce different electrical patterns. The model provides an efficient system to theoretically and experimentally explore how changes in the essential features of SFO neurons affect their electrical activity.
Asunto(s)
Potenciales de Acción , Canales de Calcio/metabolismo , Modelos Neurológicos , Neuronas/fisiología , Canales de Sodio/metabolismo , Órgano Subfornical/fisiología , Animales , Células Cultivadas , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Órgano Subfornical/citología , Órgano Subfornical/metabolismoRESUMEN
Brain-derived neurotrophic factor (BDNF), a neurotrophin traditionally associated with neural plasticity, has more recently been implicated in fluid balance and cardiovascular regulation. It is abundantly expressed in both the central nervous system (CNS) and peripheral tissue, and is also found in circulation. Studies suggest that circulating BDNF may influence the CNS through actions at the subfornical organ (SFO), a circumventricular organ (CVO) characterized by the lack of a normal blood-brain barrier (BBB). The SFO, well-known for its involvement in cardiovascular regulation, has been shown to express BDNF mRNA and mRNA for the TrkB receptor at which BDNF preferentially binds. This study was undertaken to determine if: (1) BDNF influences the excitability of SFO neurons in vitro; and (2) the cardiovascular consequences of direct administration of BDNF into the SFO of anesthetized rats. Electrophysiological studies revealed that bath application of BDNF (1 nmol/L) influenced the excitability of the majority of neurons (60%, n = 13/22), the majority of which exhibited a membrane depolarization (13.8 ± 2.5 mV, n = 9) with the remaining affected cells exhibiting hyperpolarizations (-11.1 ± 2.3 mV, n = 4). BDNF microinjections into the SFO of anesthetized rats caused a significant decrease in blood pressure (mean [area under the curve] AUC = -364.4 ± 89.0 mmHg × sec, n = 5) with no effects on heart rate (mean AUC = -12.2 ± 3.4, n = 5). Together these observations suggest the SFO to be a CNS site at which circulating BDNF could exert its effects on cardiovascular regulation.
Asunto(s)
Presión Sanguínea/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/fisiología , Frecuencia Cardíaca/efectos de los fármacos , Neuronas/fisiología , Órgano Subfornical/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Factor Neurotrófico Derivado del Encéfalo/administración & dosificación , Masculino , Neuronas/efectos de los fármacos , Ratas Sprague-Dawley , Órgano Subfornical/efectos de los fármacosRESUMEN
Inflammation is thought to play a fundamental role in the pathophysiology of hypertension and heart failure, although the mechanisms for this remain unclear. Proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α), influence the subfornical organ (SFO) to modulate sympathetic activity and blood pressure. The pressor effects of TNF-α in the SFO are partially mediated by angiotensin II (ANG II) receptor type 1 (AT1R), and TNF-α is known to potentiate ANG II-induced hypertension. However, the cellular mechanism of the interaction between TNF-α and ANG II/AT1R signaling remains unknown. In the present study, we performed Ca2+ imaging on dissociated SFO neurons in vitro from male Sprague-Dawley rats to determine whether TNF-α modulates ANG II-induced increases in intracellular Ca2+ in SFO neurons. We first established that a proportion of SFO neurons respond to ANG II, an effect that required AT1R signaling and extracellular Ca2+. We then tested the hypothesis that TNF-α may modulate the effects of ANG II on SFO neurons by examining the effects of TNF-α treatment on the ANG II-induced rise in intracellular Ca2+. We discovered that TNF-α potentiated the ANG II-induced rise in intracellular Ca2+, an effect that was dependent on the duration of TNF-α treatment. Finally, we determined that this potentiation of ANG II-induced Ca2+ activity relied on tetrodotoxin-sensitive voltage-gated Na+ (vgNa+) channels. These data suggest that the potentiation of ANG II/AT1R activity by TNF-α in SFO neurons results from the previously demonstrated ability of this cytokine to modulate the activation threshold of vgNa+ currents.
Asunto(s)
Angiotensina II/farmacología , Señalización del Calcio/efectos de los fármacos , Neuronas/efectos de los fármacos , Órgano Subfornical/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología , Animales , Células Cultivadas , Sinergismo Farmacológico , Masculino , Potenciales de la Membrana , Neuronas/metabolismo , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 1/agonistas , Receptor de Angiotensina Tipo 1/metabolismo , Órgano Subfornical/citología , Órgano Subfornical/metabolismo , Factores de Tiempo , Canales de Sodio Activados por Voltaje/efectos de los fármacos , Canales de Sodio Activados por Voltaje/metabolismoRESUMEN
The newly described hypothalamic peptide, phoenixin, is produced in the hypothalamus and adenohypophysis, where it acts to control reproductive hormone secretion. Both phoenixin and its receptor GPR173 are expressed in the hypothalamic supraoptic (SON) and paraventricular (PVN) nuclei, suggesting additional, nonreproductive effects of the peptide to control vasopressin (AVP) or oxytocin (OT) secretion. Hypothalamo-neurohypophysial explants released AVP but not OT in response to phoenixin. Intracerebroventricular administration of phoenixin into conscious, unrestrained male and female rats significantly increased circulating AVP, but not OT, levels in plasma, and it increased immediate early gene expression in the supraoptic nuclei of male rats. Bath application of phoenixin in hypothalamic slice preparations resulted in depolarization of PVN neurons, indicating a direct, neural action of phoenixin in the hypothalamus. Our results suggest that the newly described, hypothalamic peptide phoenixin, in addition to its effects on hypothalamic and pituitary mechanisms controlling reproduction, may contribute to the physiological mechanisms regulating fluid and electrolyte homeostasis.
Asunto(s)
Arginina Vasopresina/metabolismo , Hormonas Hipotalámicas/farmacología , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Hormonas Peptídicas/fisiología , Animales , Arginina Vasopresina/sangre , Femenino , Regulación de la Expresión Génica , Genes fos , Hormonas Hipotalámicas/administración & dosificación , Hormonas Hipotalámicas/fisiología , Sistema Hipotálamo-Hipofisario/metabolismo , Técnicas In Vitro , Inyecciones Intraventriculares , Masculino , Potenciales de la Membrana , Oxitocina/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Ratas Sprague-Dawley , Vías Secretoras/efectos de los fármacos , Núcleo Supraóptico/efectos de los fármacos , Núcleo Supraóptico/metabolismoRESUMEN
NEW FINDINGS: What is the topic of this review? We describe roles of crucial signalling molecules in the paraventricular nucleus of the hypothalamus and highlight recent data suggesting sex-specific changes in the expression of crucial signalling molecules and their receptors, which may underlie sex differences in both cardiovascular and metabolic function. What advances does it highlight? This review highlights the integrative capacity of the paraventricular nucleus in mediating cardiovascular and metabolic effects by integrating information from multiple signalling molecules. It also proposes that these signalling molecules have sex-specific differential gene expression, indicating the importance of considering these differences in our ongoing search to understand the female-male differences in the regulation of crucial autonomic systems. Many traditional cardiovascular hormones have been implicated in metabolic function. Conversely, many hormones traditionally involved in metabolic regulation have an effect on cardiovascular function. Many of these signalling molecules exert such effects through specific actions in the paraventricular nucleus, an integrative autonomic control centre located in the hypothalamus. Here, we focus on four cardiovascular/metabolic peptide hormones that signal within the paraventricular nucleus, namely angiotensin II, orexin, adiponectin and nesfatin-1. Each of these hormones has specific electrophysiological effects on paraventricular nucleus neurons that can be related to its physiological actions. In addition, we introduce preliminary transcriptomic data indicating that the genes for some of these hormones and their receptors have sex-specific differential expression.
Asunto(s)
Adiponectina/metabolismo , Angiotensina II/metabolismo , Proteínas de Unión al Calcio/metabolismo , Sistema Cardiovascular/metabolismo , Proteínas de Unión al ADN/metabolismo , Metabolismo Energético , Proteínas del Tejido Nervioso/metabolismo , Orexinas/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Transducción de Señal , Adiponectina/genética , Angiotensina II/genética , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al ADN/genética , Metabolismo Energético/genética , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Proteínas del Tejido Nervioso/genética , Nucleobindinas , Orexinas/genética , Factores Sexuales , Transducción de Señal/genética , TranscriptomaRESUMEN
Tumor necrosis factor-α (TNF-α) is a proinflammatory cytokine implicated in cardiovascular and autonomic regulation via actions in the central nervous system. TNF-α-/- mice do not develop angiotensin II (ANG II)-induced hypertension, and administration of TNF-α into the bloodstream of rats increases blood pressure and sympathetic tone. Recent studies have shown that lesion of the subfornical organ (SFO) attenuates the hypertensive and autonomic effects of TNF-α, while direct administration of TNF-α into the SFO increases blood pressure, suggesting the SFO to be a key site for the actions of TNF-α. Therefore, we used patch-clamp techniques to examine both acute and long-term effects of TNF-α on the excitability of Sprague-Dawley rat SFO neurons. It was observed that acute bath application of TNF-α depolarized SFO neurons and subsequently increased action potential firing rate. Furthermore, the magnitude of depolarization and the proportion of depolarized SFO neurons were concentration dependent. Interestingly, following 24-h incubation with TNF-α, the basal firing rate of the SFO neurons was increased and the rheobase was decreased, suggesting that TNF-α elevates SFO neuron excitability. This effect was likely mediated by the transient sodium current, as TNF-α increased the magnitude of the current and lowered its threshold of activation. In contrast, TNF-α did not appear to modulate either the delayed rectifier potassium current or the transient potassium current. These data suggest that acute and long-term TNF-α exposure elevates SFO neuron activity, providing a basis for TNF-α hypertensive and sympathetic effects.NEW & NOTEWORTHY Considerable recent evidence has suggested important links between inflammation and the pathological mechanisms underlying hypertension. The present study describes cellular mechanisms through which acute and long-term exposure of tumor necrosis factor-α (TNF-α) influences the activity of subfornical organ neurons by modulating the voltage-gated transient Na+ current. This provides critical new information regarding the specific pathological mechanisms through which inflammation and TNF-α in particular may result in the development of hypertension.
Asunto(s)
Potenciales de Acción , Neuronas/efectos de los fármacos , Órgano Subfornical/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología , Animales , Células Cultivadas , Masculino , Neuronas/metabolismo , Neuronas/fisiología , Canales de Potasio/metabolismo , Ratas , Ratas Sprague-Dawley , Canales de Sodio/metabolismo , Órgano Subfornical/citología , Órgano Subfornical/fisiologíaRESUMEN
Adropin is a peptide hormone with cardiovascular and metabolic roles in the periphery, including effects on glucose and lipid homeostasis. Central administration of adropin has been shown to inhibit water intake in rats; however, the site at which central adropin acts has yet to be elucidated. The hypothalamic paraventricular nucleus (PVN), a critical autonomic control center, plays essential roles in the control of fluid balance, energy homeostasis, and cardiovascular regulation, and is, therefore, a potential target for centrally acting adropin. In the present study, we used whole cell patch-clamp techniques to examine the effects of adropin on the excitability of neurons within the PVN. All three neuronal subpopulations (magnocellular, preautonomic, and neuroendocrine) in the PVN were found to be responsive to bath-application of 10 nM adropin, which elicited responses in 68% of cells tested (n = 57/84). The majority of cells (58%) depolarized (5.2 ± 0.3 mV; n = 49) in response to adropin, whereas the remaining responsive cells (10%) hyperpolarized (-3.4 ± 0.5 mV; n = 8), effects that were shown to be concentration-dependent. Additionally, responses were maintained in the presence of 1 µM TTX in 75% of cells tested (n = 9/12), and voltage-clamp analysis revealed that adropin had no effect on the amplitude or frequency of excitatory or inhibitory postsynaptic currents (EPSCs and IPSCs) in PVN neurons, suggesting the peptide exerts direct, postsynaptic actions on these neurons. Collectively, these findings suggest central adropin may exert its physiological effects through direct actions on neurons in the PVN.
Asunto(s)
Potenciales de Acción/fisiología , Proteínas Sanguíneas/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Neuronas/fisiología , Núcleo Hipotalámico Paraventricular/fisiología , Péptidos/metabolismo , Transmisión Sináptica/fisiología , Animales , Células Cultivadas , Masculino , Ratas , Ratas Sprague-DawleyRESUMEN
Previously we have demonstrated that microinjection of acetylcholine (ACh) into the intermediate nucleus of the solitary tract (iNTS) induced sympatho-inhibition combined with a decrease in the phrenic nerve activity (PNA), whereas in the commissural NTS (cNTS), ACh did not change sympathetic nerve activity (SNA), but increased the PNA. In view of these demonstrated distinctive effects of ACh in different subnuclei of the NTS the current studies were undertaken to examine, using patch clamp techniques, the specific effects of ACh on the excitability of individual neurons in the NTS, as well as the neuropharmacology of these actions. Coronal slices of the brainstem containing either cNTS or iNTS subnuclei were used, and whole cell patch clamp recordings obtained from individual neurons in these two subnuclei. In cNTS, 58% of recorded neurons (n=12) demonstrated rapid reversible depolarizations in response to ACh (10mM), effects which were inhibited by the nicotinic antagonist mecamylamine (10µM), but unaffected by the muscarinic antagonist atropine (10µM). Similarly, bath application of ACh depolarized 76% of iNTS neurons (n=17), although in this case both atropine and mecamylamine reduced the ACh-induced depolarization. These data demonstrate that ACh depolarizes cNTS neurons through actions on nicotinic receptors, while depolarizing effects in iNTS are apparently mediated by both receptors.
Asunto(s)
Antagonistas Colinérgicos/farmacología , Antagonistas Muscarínicos/farmacología , Neuronas/efectos de los fármacos , Antagonistas Nicotínicos/farmacología , Núcleo Solitario/efectos de los fármacos , Acetilcolina/farmacología , Animales , Atropina/farmacología , Agonistas Colinérgicos/farmacología , Masculino , Mecamilamina/farmacología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Neuronas/metabolismo , Técnicas de Placa-Clamp , Ratas Sprague-Dawley , Núcleo Solitario/metabolismo , Técnicas de Cultivo de TejidosRESUMEN
The subfornical organ (SFO) is a critical circumventricular organ involved in the control of cardiovascular and metabolic homeostasis. Despite the plethora of circulating signals continuously sensed by the SFO, studies investigating how these signals are integrated are lacking. In this study, we use patch-clamp techniques to investigate how the traditionally classified "cardiovascular" hormone ANG II, "metabolic" hormone CCK and "metabolic" signal glucose interact and are integrated in the SFO. Sequential bath application of CCK (10 nM) and ANG (10 nM) onto dissociated SFO neurons revealed that 63% of responsive SFO neurons depolarized to both CCK and ANG; 25% depolarized to ANG only; and 12% hyperpolarized to CCK only. We next investigated the effects of glucose by incubating and recording neurons in either hypoglycemic, normoglycemic, or hyperglycemic conditions and comparing the proportions of responses to ANG (n = 55) or CCK (n = 83) application in each condition. A hyperglycemic environment was associated with a larger proportion of depolarizing responses to ANG (χ2, P < 0.05), and a smaller proportion of depolarizing responses along with a larger proportion of hyperpolarizing responses to CCK (χ2, P < 0.01). Our data demonstrate that SFO neurons excited by CCK are also excited by ANG and that glucose environment affects the responsiveness of neurons to both of these hormones, highlighting the ability of SFO neurons to integrate multiple metabolic and cardiovascular signals. These findings have important implications for this structure's role in the control of various autonomic functions during hyperglycemia.
Asunto(s)
Fenómenos Fisiológicos Cardiovasculares , Redes y Vías Metabólicas/fisiología , Neuronas/fisiología , Órgano Subfornical/fisiología , Angiotensina II/metabolismo , Animales , Células Cultivadas , Colecistoquinina/metabolismo , Glucosa/metabolismo , Masculino , Análisis de Flujos Metabólicos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiologíaRESUMEN
The central nervous system (CNS) in concert with the heart and vasculature is essential to maintaining cardiovascular (CV) homeostasis. In recent years, our understanding of CNS control of blood pressure regulation (and dysregulation leading to hypertension) has evolved substantially to include (i) the actions of signaling molecules that are not classically viewed as CV signaling molecules, some of which exert effects at CNS targets in a non-traditional manner, and (ii) CNS locations not traditionally viewed as central autonomic cardiovascular centers. This review summarizes recent work implicating immune signals and reproductive hormones, as well as gasotransmitters and reactive oxygen species in the pathogenesis of hypertension at traditional CV control centers. Additionally, recent work implicating non-conventional CNS structures in CV regulation is discussed.
RESUMEN
The area postrema (AP) is a circumventricular organ with important roles in central autonomic regulation. This medullary structure has been shown to express the leptin receptor and has been suggested to have a role in modulating peripheral signals, indicating energy status. Using RT-PCR, we have confirmed the presence of mRNA for the leptin receptor, ObRb, in AP, and whole cell current-clamp recordings from dissociated AP neurons demonstrated that leptin influenced the excitability of 51% (42/82) of AP neurons. The majority of responsive neurons (62%) exhibited a depolarization (5.3 ± 0.7 mV), while the remaining affected cells (16/42) demonstrated hyperpolarizing effects (-5.96 ± 0.95 mV). Amylin was found to influence the same population of AP neurons. To elucidate the mechanism(s) of leptin and amylin actions in the AP, we used fluorescence resonance energy transfer (FRET) to determine the effect of these peptides on cAMP levels in single AP neurons. Leptin and amylin were found to elevate cAMP levels in the same dissociated AP neurons (leptin: % total FRET response 25.3 ± 4.9, n = 14; amylin: % total FRET response 21.7 ± 3.1, n = 13). When leptin and amylin were coapplied, % total FRET response rose to 53.0 ± 8.3 (n = 6). The demonstration that leptin and amylin influence a subpopulation of AP neurons and that these two signaling molecules have additive effects on single AP neurons to increase cAMP, supports a role for the AP as a central nervous system location at which these circulating signals may act through common intracellular signaling pathways to influence central control of energy balance.
Asunto(s)
Área Postrema/efectos de los fármacos , Leptina/farmacología , Neuronas/efectos de los fármacos , Receptores de Leptina/agonistas , Potenciales de Acción , Animales , Área Postrema/citología , Área Postrema/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Metabolismo Energético/efectos de los fármacos , Técnicas In Vitro , Polipéptido Amiloide de los Islotes Pancreáticos/farmacología , Masculino , Neuronas/metabolismo , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Sistemas de Mensajero Secundario/efectos de los fármacos , Factores de TiempoRESUMEN
Hydrogen sulfide (H2S) is a gasotransmitter that has been described to affect the membrane potential of neurons in a number of brain areas. Using whole cell patch-clamp electrophysiological techniques, we investigated the effects of H2S on the membrane potential of neurons in the nucleus of the solitary tract (NTS). Whole cell patch clamp recordings were obtained from 300 µm coronal NTS brain slices and bath application of the H2S donor, sodium hydrosulfide (NaHS)(1mM, 5mM and 10mM) was shown to have clear concentration-dependent, reversible, depolarizing effects on the membrane potential of 95% of neurons tested (72/76), an effect which in 64% (46/72) of these responding neurons was followed by a hyperpolarization. In the presence of the voltage-gated sodium channel blocker tetrodotoxin (TTX) and the glutamate receptor antagonist kynurenic acid (KA), these depolarizing effects of 5 mM NaHS (5.0 ± 2.2 mV (n=7)) were still observed, although they were significantly reduced compared to regular aCSF (7.7 ± 2.0 mV (n=7), p*<0.05, paired t-test). We also demonstrated that hyperpolarizations in response to 5mM NaHS resulted from modulation of the KATP channel with recordings showing that following KATP channel block with glibenclamide these hyperpolarizing effects were abolished (Control -7.9 ± 1.2 mV, Glibenclamide -1.9 ± 0.9 mV (n=8) p<0.05, paired t-test). This study has for the first time described post-synaptic effects of this gasotransmitter on the membrane potential of NTS neurons and thus implicates this transmitter in regulating the diverse autonomic systems controlled by the NTS.
Asunto(s)
Sulfuro de Hidrógeno/farmacología , Potenciales de la Membrana/efectos de los fármacos , Neuronas/efectos de los fármacos , Neurotransmisores/farmacología , Núcleo Solitario/efectos de los fármacos , Animales , Sulfuro de Hidrógeno/metabolismo , Masculino , Potenciales de la Membrana/fisiología , Neuronas/metabolismo , Neurotransmisores/metabolismo , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Núcleo Solitario/metabolismoRESUMEN
The subfornical organ (SFO) is a circumventricular organ recognized for its ability to sense and integrate hydromineral and hormonal circulating fluid balance signals, information which is transmitted to central autonomic nuclei to which SFO neurons project. While the role of SFO was once synonymous with physiological responses to osmotic, volumetric and cardiovascular challenge, recent data suggest that SFO neurons also sense and integrate information from circulating signals of metabolic status. Using microarrays, we have confirmed the expression of receptors already described in the SFO, and identified many novel transcripts expressed in this circumventricular organ including receptors for many of the critical circulating energy balance signals such as adiponectin, apelin, endocannabinoids, leptin, insulin and peptide YY. This transcriptome analysis also identified SFO transcripts, the expressions of which are significantly changed by either 72 h dehydration, or 48 h starvation, compared to fed and euhydrated controls. Expression and potential roles for many of these targets are yet to be confirmed and elucidated. Subsequent validation of data for adiponectin and leptin receptors confirmed that receptors for both are expressed in the SFO, that discrete populations of neurons in this tissue are functionally responsive to these adipokines, and that such responsiveness is regulated by physiological state. Thus, transcriptomic analysis offers great promise for understanding the integrative complexity of these physiological systems, especially with development of technologies allowing description of the entire transcriptome of single, carefully phenotyped, SFO neurons. These data will ultimately elucidate mechanisms through which these uniquely positioned neurons respond to and integrate complex circulating signals.
Asunto(s)
Sistema Nervioso Autónomo/fisiología , Órgano Subfornical/metabolismo , Transcriptoma , Animales , Metabolismo Energético , Humanos , Órgano Subfornical/fisiologíaRESUMEN
The mechanisms involved in cardiovascular regulation, such as vascular tone, fluid volume and blood osmolarity, are quite often mediated by signals circulating in the periphery, such as angiotensin II and sodium concentration. Research has identified areas within the lamina terminalis (LT), specifically the sensory circumventricular organs (CVOs), the subfornical organ and the organum vasculosum of the lamina terminalis, as playing crucial roles detecting and integrating information derived from these circulating signals. The median preoptic nucleus (MnPO) is a third integrative structure within the LT that influences cardiovascular homeostasis, although to date, its role is not as clearly elucidated. More recent studies have demonstrated that the CVOs are not only essential in the detection of traditional cardiovascular signals but also signals primarily considered to be important in the regulation of metabolic, reproductive and inflammatory processes that have now also been implicated in cardiovascular regulation. In this review, we highlight the critical roles played by the LT in the detection and integration of circulating signals that provide critical feedback control information contributing to cardiovascular regulation.