Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 12: 1355723, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38807649

RESUMEN

Introduction: Osteoarthritis (OA) and rotator cuff tear (RCT) pathologies have distinct scapular morphologies that impact disease progression. Previous studies examined the correlation between scapular morphology and glenohumeral joint biomechanics through critical shoulder angle (CSA) variations. In abduction, higher CSAs, common in RCT patients, increase vertical shear force and rotator cuff activation, while lower CSAs, common in OA patients, are associated with higher compressive force. However, the impact of the complete patient-specific scapular morphology remains unexplored due to challenges in establishing personalized models. Methods: CT data of 48 OA patients and 55 RCT patients were collected. An automated pipeline customized the AnyBody™ model with patient-specific scapular morphology and glenohumeral joint geometry. Biomechanical simulations calculated glenohumeral joint forces and instability ratios (shear-to-compressive forces). Moment arms and torques of rotator cuff and deltoid muscles were analyzed for each patient-specific geometry. Results and discussion: This study confirms the increased instability ratio on the glenohumeral joint in RCT patients during abduction (mean maximum is 32.80% higher than that in OA), while OA patients exhibit a higher vertical instability ratio in flexion (mean maximum is 24.53% higher than that in RCT) due to the increased inferior vertical shear force. This study further shows lower total joint force in OA patients than that in RCT patients (mean maximum total force for the RCT group is 11.86% greater than that for the OA group), attributed to mechanically advantageous muscle moment arms. The findings highlight the significant impact of the glenohumeral joint center positioning on muscle moment arms and the total force generated. We propose that the RCT pathomechanism is related to force magnitude, while the OA pathomechanism is associated with the shear-to-compressive loading ratio. Overall, this research contributes to the understanding of the impact of the complete 3D scapular morphology of the individual on shoulder biomechanics.

2.
J Mech Behav Biomed Mater ; 155: 106579, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38749266

RESUMEN

Silicon nitride is utilized clinically as a bioceramic for spinal fusion cages, owing to its high strength, osteoconductivity, and antibacterial effects. Nevertheless, silicon nitride exhibits suboptimal damping properties, a critical factor in mitigating traumatic bone injuries and fractures. In fact, there is a scarcity of spinal implants that simultaneously demonstrate proficient damping performance and support osteogenesis. In our study, we fabricated a novel sodium alginate-silicon nitride/poly(vinyl alcohol) (SA-SiN/PVA) composite scaffold, enabling enhanced energy absorption and rapid elastic recovery under quasi-static and impact loading scenarios. Furthermore, the study demonstrated that the incorporation of physical and chemical cross-linking significantly improved stiffness and recoverable energy dissipation. Concerning the interaction between cells and materials, our findings suggest that the addition of silicon nitride stimulated osteogenic differentiation while inhibiting Staphylococcus aureus growth. Collectively, the amalgamation of ceramics and tough hydrogels facilitates the development of advanced composites for spinal implants, manifesting superior damping, osteogenic potential, and antibacterial properties. This approach holds broader implications for applications in bone tissue engineering.


Asunto(s)
Alginatos , Materiales Biocompatibles , Ensayo de Materiales , Alcohol Polivinílico , Compuestos de Silicona , Staphylococcus aureus , Alginatos/química , Alginatos/farmacología , Alcohol Polivinílico/química , Compuestos de Silicona/química , Compuestos de Silicona/farmacología , Staphylococcus aureus/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Osteogénesis/efectos de los fármacos , Fenómenos Mecánicos , Andamios del Tejido/química , Humanos
3.
J Biomech ; 170: 112127, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38781798

RESUMEN

Abnormal postoperative global sagittal alignment (GSA) is associated with an increased risk of mechanical complications after spinal surgery. Typical assessment of sagittal alignment relies on a few selected measures, disregarding global complexity and variability of the sagittal curvature. The normative range of spinal loads associated with GSA has not yet been considered in clinical evaluation. The study objectives were to develop a new GSA assessment method that holistically describes the inherent relationships within GSA and to estimate the related spinal loads. Vertebral endplates were annotated on radiographs of 85 non-pathological subjects. A Principal Component Analysis (PCA) was performed to derive a Statistical Shape Model (SSM). Associations between identified GSA variability modes and conventional alignment measures were assessed. Simulations of respective Shape Modes (SMs) were performed using an established musculoskeletal AnyBody model to estimate normal variation in cervico-thoraco-lumbar loads. The first six principal components explained 97.96% of GSA variance. The SSM provides the normative range of GSA and a visual representation of the main variability modes. Normal variation relative to the population mean in identified alignment features was found to influence spinal loads, e.g. the lower bound of the second shape mode (SM2-2σ) corresponds to an increase in L4L5-compression by 378.64 N (67.86%). Six unique alignment features were sufficient to describe GSA almost entirely, demonstrating the value of the proposed method for an objective and comprehensive analysis of GSA. The influence of these features on spinal loads provides a normative biomechanical reference, eventually guiding surgical planning of deformity correction in the future.


Asunto(s)
Análisis de Componente Principal , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Columna Vertebral/fisiología , Columna Vertebral/diagnóstico por imagen , Soporte de Peso/fisiología , Anciano , Vértebras Lumbares/fisiología , Vértebras Lumbares/diagnóstico por imagen , Fenómenos Biomecánicos , Modelos Biológicos
4.
Mater Today Bio ; 26: 101060, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38711934

RESUMEN

Cardiovascular diseases are a main cause of death worldwide, leading to a growing demand for medical devices to treat this patient group. Central to the engineering of such devices is a good understanding of the biology and physics of cell-surface interactions. In existing blood-contacting devices, such as vascular grafts, the interaction between blood, cells, and material is one of the main limiting factors for their long-term durability. An improved understanding of the material's chemical- and physical properties as well as its structure all play a role in how endothelial cells interact with the material surface. This review provides an overview of how different surface structures influence endothelial cell responses and what is currently known about the underlying mechanisms that guide this behavior. The structures reviewed include decellularized matrices, electrospun fibers, pillars, pits, and grated surfaces.

5.
Trends Biotechnol ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38658198

RESUMEN

Advances in tissue engineering for both system modeling and organ regeneration depend on embracing and recapitulating the target tissue's functional and structural complexity. Microenvironmental features such as anisotropy, heterogeneity, and other biochemical and mechanical spatiotemporal cues are essential in regulating tissue development and function. Novel biofabrication strategies and innovative biomaterial design have emerged as promising tools to better reproduce such features. These facilitate a transition towards high-fidelity biomimetic structures, offering opportunities for a deeper understanding of tissue function and the development of superior therapies. In this review, we explore some of the key structural and compositional aspects of tissues, lay out how to achieve similar outcomes with current fabrication strategies, and identify the main challenges and promising avenues for future research.

6.
Osteoporos Int ; 35(7): 1231-1241, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38658459

RESUMEN

There is imminent refracture risk in elderly individuals for up to six years, with a decline thereafter except in women below 75 who face a constant elevated risk. Elderly men with fractures face the highest mortality risk, particularly those with hip and vertebral fractures. Targeted monitoring and treatment strategies are recommended. PURPOSE: Current management and interventions for osteoporotic fractures typically focus on bone mineral density loss, resulting in suboptimal evaluation of fracture risk. The aim of the study is to understand the progression of fractures to refractures and mortality in the elderly using multi-state models to better target those at risk. METHODS: This prospective, observational study analysed data from the AGES-Reykjavik cohort of Icelandic elderly, using multi-state models to analyse the evolution of fractures into refractures and mortality, and to estimate the probability of future events in subjects based on prognostic factors. RESULTS: At baseline, 4778 older individuals aged 65 years and older were included. Elderly men, and elderly women above 80 years of age, had a distinct imminent refracture risk that lasted between 2-6 years, followed by a sharp decline. However, elderly women below 75 continued to maintain a nearly constant refracture risk profile for ten years. Hip (30-63%) and vertebral (24-55%) fractures carried the highest 5-year mortality burden for elderly men and women, regardless of age, and for elderly men over 80, lower leg fractures also posed a significant mortality risk. CONCLUSION: The risk of refracture significantly increases in the first six years following the initial fracture. Elderly women, who experience fractures at a younger age, should be closely monitored to address their long-term elevated refracture risk. Elderly men, especially those with hip and vertebral fractures, face substantial mortality risk and require prioritized monitoring and treatment.


Asunto(s)
Fracturas de Cadera , Fracturas Osteoporóticas , Recurrencia , Fracturas de la Columna Vertebral , Humanos , Fracturas Osteoporóticas/mortalidad , Anciano , Masculino , Femenino , Islandia/epidemiología , Anciano de 80 o más Años , Fracturas de Cadera/mortalidad , Fracturas de la Columna Vertebral/mortalidad , Estudios Prospectivos , Medición de Riesgo/métodos , Progresión de la Enfermedad , Densidad Ósea/fisiología , Pronóstico
7.
J Biomech ; 168: 112039, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38657434

RESUMEN

Musculoskeletal simulations with muscle optimization aim to minimize muscle effort, hence are considered unable to predict the activation of antagonistic muscles. However, activation of antagonistic muscles might be necessary to satisfy the dynamic equilibrium. This study aims to elucidate under which conditions coactivation can be predicted, to evaluate factors modulating it, and to compare the antagonistic activations predicted by the lumbar spine model with literature data. Simple 2D and 3D models, comprising of 2 or 3 rigid bodies, with simple or multi-joint muscles, were created to study conditions under which muscle coactivity is predicted. An existing musculoskeletal model of the lumbar spine developed in AnyBody was used to investigate the effects of modeling intra-abdominal pressure (IAP), linear/cubic and load/activity-based muscle recruitment criterion on predicted coactivation during forward flexion and lateral bending. The predicted antagonist activations were compared to reported EMG data. Muscle coactivity was predicted with simplified models when multi-joint muscles were present or the model was three-dimensional. During forward flexion and lateral bending, the coactivation ratio predicted by the model showed good agreement with experimental values. Predicted coactivation was negligibly influenced by IAP but substantially reduced with a force-based recruitment criterion. The conditions needed in multi-body models to predict coactivity are: three-dimensionality or multi-joint muscles, unless perfect antagonists. The antagonist activations are required to balance 3D moments but do not reflect other physiological phenomena, which might explain the discrepancies between model predictions and experimental data. Nevertheless, the findings confirm the ability of the multi-body trunk models to predict muscle coactivity and suggest their overall validity.


Asunto(s)
Modelos Biológicos , Músculo Esquelético , Humanos , Músculo Esquelético/fisiología , Torso/fisiología , Vértebras Lumbares/fisiología , Contracción Muscular/fisiología , Electromiografía , Simulación por Computador , Fenómenos Biomecánicos
8.
Artículo en Inglés | MEDLINE | ID: mdl-38642877

RESUMEN

BACKGROUND: Tendon transfers are established techniques to regain external rotation mobility in patients with an irreparable, posterosuperior massive rotator cuff tear (MRCT). Posterosuperior MRCT with intact teres minor (type D MRCT) can lead to excessive teres minor loading to maintain external rotation. We hypothesize that tendon transfers are effective in relieving teres minor loading in type D MRCTs. Our aim was to biomechanically assess muscle synergism with latissimus dorsi (LD transfer) and lower trapezius (LT transfer) tendon transfer during external rotation at different abduction heights. METHODS: Using musculoskeletal modeling, we analyzed and compared the moment arm, muscle torque, and muscle activity between a healthy and type D MRCT pathologic model with and without the LD- or LT transfer at infraspinatus and teres minor insertion sites. Output measures were analyzed during external rotation at different abduction angles and 10-50 N resistance against external rotation. We assessed its impact on teres minor loading in a type D MRCT. Morphologic variations were parameterized using the critical shoulder angle and the acromiohumeral distance to address variations among patients. RESULTS: Both transfer types reduced teres minor torque and activity significantly, reaching physiological state at 40 N external resistance (P < .001), with insertion to infraspinatus site being more effective than teres minor site (P < .001). External rotation moment arms of LD transfer were larger than LT transfer at 90° abduction (25.1 ± 0.8 mm vs. 21.2 ± 0.6 mm, P < .001) and vice versa at 0° abduction (17.4 ± 0.5 mm vs. 24.0 ± 0.2 mm, P < .001). Although the healthy infraspinatus was the main external rotator in all abduction angles (50%-70% torque), a type D MRCT resulted in a 70%-90% increase of teres minor torque and an up to 7-fold increase in its activity leading to excessive loadings beyond 10 N resistance against external rotation. Varying the critical shoulder angle and the acromiohumeral distance led to minor variations in muscle moment arm and muscle activity. CONCLUSION: We identified biomechanical efficacy of both tendon transfers in type D MRCT regarding teres minor load relief and superior performance of the transfers at the infraspinatus insertion site.

9.
Osteoporos Int ; 35(6): 971-996, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38353706

RESUMEN

The use of opportunistic computed tomography (CT) image-based biomarkers may be a low-cost strategy for screening older individuals at high risk for osteoporotic fractures and populations that are not sufficiently targeted. This review aimed to assess the discriminative ability of image-based biomarkers derived from existing clinical routine CT scans for hip, vertebral, and major osteoporotic fracture prediction. A systematic search in PubMed MEDLINE, Embase, Cochrane, and Web of Science was conducted from the earliest indexing date until July 2023. The evaluation of study quality was carried out using a modified Quality Assessment Tool for Diagnostic Accuracy Studies (QUADAS-2) checklist. The primary outcome of interest was the area under the curve (AUC) and its corresponding 95% confidence intervals (CIs) obtained for four main categories of biomarkers: areal bone mineral density (BMD), image attenuation, volumetric BMD, and finite element (FE)-derived biomarkers. The meta-analyses were performed using random effects models. Sixty-one studies were included in this review, among which 35 were synthesized in a meta-analysis and the remaining articles were qualitatively synthesized. In comparison to the pooled AUC of areal BMD (0.73 [95% CI 0.71-0.75]), the pooled AUC values for predicting osteoporotic fractures for FE-derived parameters (0.77 [95% CI 0.72-0.81]; p < 0.01) and volumetric BMD (0.76 [95% CI 0.71-0.81]; p < 0.01) were significantly higher, but there was no significant difference with the pooled AUC for image attenuation (0.73 [95% CI 0.66-0.79]; p = 0.93). Compared to areal BMD, volumetric BMD and FE-derived parameters may provide a significant improvement in the discrimination of osteoporotic fractures using opportunistic CT assessments.


Asunto(s)
Biomarcadores , Densidad Ósea , Fracturas Osteoporóticas , Tomografía Computarizada por Rayos X , Humanos , Fracturas Osteoporóticas/diagnóstico por imagen , Fracturas Osteoporóticas/fisiopatología , Densidad Ósea/fisiología , Tomografía Computarizada por Rayos X/métodos , Biomarcadores/sangre , Tamizaje Masivo/métodos , Fracturas de la Columna Vertebral/fisiopatología , Fracturas de la Columna Vertebral/diagnóstico por imagen , Fracturas de Cadera/diagnóstico por imagen , Fracturas de Cadera/fisiopatología , Análisis de Elementos Finitos
10.
Comput Methods Programs Biomed ; 245: 108009, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38219339

RESUMEN

BACKGROUND AND OBJECTIVE: The accurate evaluation of bone mechanical properties is essential for predicting fracture risk based on clinical computed tomography (CT) images. However, blurring and noise in clinical CT images can compromise the accuracy of these predictions, leading to incorrect diagnoses. Although previous studies have explored enhancing trabecular bone CT images to super-resolution (SR), none of these studies have examined the possibility of using clinical CT images from different instruments, typically of lower resolution, as a basis for analysis. Additionally, previous studies rely on 2D SR images, which may not be sufficient for accurate mechanical property evaluation, due to the complex nature of the 3D trabecular bone structures. The objective of this study was to address these limitations. METHODS: A workflow was developed that utilizes convolutional neural networks to generate SR 3D models across different clinical CT instruments. The morphological and finite-element-derived mechanical properties of these SR models were compared with ground truth models obtained from micro-CT scans. RESULTS: A significant improvement in analysis accuracy was demonstrated, where the new SR models increased the accuracy by up to 700 % compared with the low-resolution data, i.e. clinical CT images. Additionally, we found that the mixture of different CT image datasets may improve the SR model performance. CONCLUSIONS: SR images, generated by convolutional neural networks, outperformed clinical CT images in the determination of morphological and mechanical properties. The developed workflow could be implemented for fracture risk prediction, potentially leading to improved diagnoses and subsequent clinical decision making.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Huesos , Hueso Esponjoso
11.
J Mech Behav Biomed Mater ; 150: 106333, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38134586

RESUMEN

The fibro-cartilaginous labrum surrounds the acetabular rim and is important for hip joint stability and sealing. Sealing may be enhanced by swelling pressure within the normal labrum. Swelling of the degenerated or torn labrum might occur and potentially contribute to the development of osteoarthritis, through altered load transmission. This study aimed to characterize the three-dimensional swelling behaviour, the collagen fiber orientation and spatial proteoglycan distribution of the bovine acetabular labrum. Specimens were harvested from bovine donors (192-652 days, male, n = 6 donors). Structure was analyzed by scanning electron microscopy, histology, and dimethylmethylene blue assay. Specimen dimensions were measured before and after incubation in phosphate buffered saline to assess the swelling. Results showed that the articulating surface is composed of a collagen mesh network. Collagen fiber bundles showed a low degree of alignment close to the surface and were circumferentially aligned in the deep tissue. Proteoglycans were identified clustered between the collagen bundles. Glycosaminoglycan content was 10 x lower than that of cartilage (23.1 ± 6.4 compared to 299.5 ± 19.1 µg/mg dry weight) with minor regional differences. Specimens swelled significantly more in the orthogonal direction (swelling ratio 124.7 ± 10.2%) compared to the swelling parallel to the articulating surface (108.8 ± 6.1% and 102.8 ± 4.1%). In the deep tissue, swelling was also restricted in the main collagen fiber bundle direction (circumferentially), with a swelling ratio of 109.5 ± 4.0% in the main fiber bundle direction compared to 126.8 ± 7.3 % and 122.3 ± 5.8% radially. The findings demonstrate that the labrum shows anisotropic swelling properties, which reflect the anisotropy in the tissue structure and inter-fiber localisation of proteoglycans.


Asunto(s)
Acetábulo , Cartílago Articular , Masculino , Animales , Bovinos , Anisotropía , Cartílago Articular/patología , Articulación de la Cadera , Colágeno , Proteoglicanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...