Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 11878, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32665597

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Sci Rep ; 10(1): 6954, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32332769

RESUMEN

Low threshold voltage activated Kv1 potassium channels play key roles in regulating action potential (AP) threshold, neural excitability, and synaptic transmission. Kv1 channels are highly expressed in the cerebellum and mutations of human Kv1 genes are associated to episodic forms of ataxia (EAT-1). Besides the well-established role of Kv1 channels in controlling the cerebellar basket-Purkinje cells synapses, Kv1 channels are expressed by the deep cerebellar nuclear neurons (DCNs) where they regulate the activity of principal DCNs carrying the cerebellar output. DCNs include as well GABAergic neurons serving important functions, such as those forming the inhibitory nucleo-olivary pathway, the nucleo-cortical DCNs providing feed-back inhibition to the cerebellar cortex, and those targeting principal DCNs, but whether their function is regulated by Kv1 channels remains unclear. Here, using cerebellar slices from mature GAD67-GFP mice to identify putative GABAergic-DCNs (GAD + DCN) we show that specific Kv1 channel blockers (dendrotoxin-alpha/I/K, DTXs) hyperpolarized the threshold of somatic action potentials, increased the spontaneous firing rate and hampered evoked high frequency repetitive responses of GAD + DCNs. Moreover, DTXs induced somatic depolarization and tonic firing in previously silent, putative nucleo-cortical DCNs. These results reveal a novel role of Kv1 channels in regulating GABAergic-DCNs activity and thereby, cerebellar function at multiple levels.


Asunto(s)
Potenciales de Acción/fisiología , Núcleos Cerebelosos/metabolismo , Neuronas GABAérgicas/metabolismo , Canal de Potasio Kv.1.1/metabolismo , Canal de Potasio Kv.1.2/metabolismo , Canales de Potasio de la Superfamilia Shaker/metabolismo , Animales , Núcleos Cerebelosos/citología , Canal de Potasio Kv.1.1/genética , Canal de Potasio Kv.1.2/genética , Ratones , Neuronas/citología , Neuronas/metabolismo
3.
Cell Mol Life Sci ; 77(11): 2199-2216, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31451894

RESUMEN

The enzyme poly-ADP-ribose-polymerase (PARP) has important roles for many forms of DNA repair and it also participates in transcription, chromatin remodeling and cell death signaling. Currently, some PARP inhibitors are approved for cancer therapy, by means of canceling DNA repair processes and cell division. Drug repurposing is a new and attractive aspect of therapy development that could offer low-cost and accelerated establishment of new treatment options. Excessive PARP activity is also involved in neurodegenerative diseases including the currently untreatable and blinding retinitis pigmentosa group of inherited retinal photoreceptor degenerations. Hence, repurposing of known PARP inhibitors for patients with non-oncological diseases might provide a facilitated route for a novel retinitis pigmentosa therapy. Here, we demonstrate and compare the efficacy of two different PARP inhibitors, BMN-673 and 3-aminobenzamide, by using a well-established retinitis pigmentosa model, the rd1 mouse. Moreover, the mechanistic aspects of the PARP inhibitor-induced protection were also investigated in the present study. Our results showed that rd1 rod photoreceptor cell death was decreased by about 25-40% together with the application of these two PARP inhibitors. The wealth of human clinical data available for BMN-673 highlights a strong potential for a rapid clinical translation into novel retinitis pigmentosa treatments. Remarkably, we have found that the efficacy of 3 aminobenzamide was able to decrease PARylation at the nanomolar level. Our data also provide a link between PARP activity with the Wnt/ß-catenin pathway and the major intracellular antioxidant concentrations behind the PARP-dependent retinal degeneration. In addition, molecular modeling studies were integrated with experimental studies for better understanding of the role of PARP1 inhibitors in retinal degeneration.


Asunto(s)
Benzamidas/uso terapéutico , Ftalazinas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Degeneración Retiniana/tratamiento farmacológico , Retinitis Pigmentosa/tratamiento farmacológico , Animales , Reposicionamiento de Medicamentos/métodos , Humanos , Ratones , Poli(ADP-Ribosa) Polimerasas/metabolismo , Retina/efectos de los fármacos , Retina/metabolismo , Retina/patología , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología
4.
Front Cell Neurosci ; 12: 411, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30483061

RESUMEN

Sympathetic neurons of the rat superior cervical ganglion (SCG) can segregate their neurotransmitters and co-transmitters to separate varicosities of single axons. We have shown that transmitter segregation is a plastic phenomenon and that it is correlated with the strength of synaptic transmission. Here, we determined whether sympathetic dysfunction occurring in stress and hypertension was correlated with plastic changes of neurotransmitter segregation. We characterized the expression of the markers, L-glutamic acid decarboxylase of 67 kDa (GAD67) and vesicular acetylcholine (ACh) transporter (VAChT) in the SCG of cold stressed and spontaneously hypertensive rats (SHR). Considering that the SCG comprises a heterogeneous neuronal population, we explored whether the expression and segregation of neurotransmitters would also have an intraganglionic heterogeneous distribution in ganglia of stressed and hypertensive rats. Furthermore, since hypertension in SHR is detected around 8-10 weeks, we evaluated expression and segregation of ACh and GABA in adult hypertensive (12-week old (wo)) and young pre-hypertensive (6-wo) SHR. We found an increase in segregation of ACh and GABA with no change in transmitter expression in ganglia of stressed animals. In contrast, in SHR, there was an increase in GABA expression, although segregation did not vary. Segregation showed a caudo-rostral gradient in controls but not in the ganglia of stressed animals. GABA expression showed a rostro-caudal gradient in adult SHR, which was not present in young 6-wo rats. In young SHR, ACh increased and, unexpectedly, segregation of ACh and GABA was higher than in adults. Data suggest that ACh and GABA segregation increases in acute sympathetic hyperactivity like stress, but does not vary in chronic hyperactivity such as in hypertension. Changes in segregation are age-dependent and might be involved in the mechanisms underlying stress and hypertension.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...