Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Diabetes Care ; 43(7): 1520-1529, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32358022

RESUMEN

OBJECTIVE: In patients with type 2 diabetes (T2D) and critical limb ischemia (CLI), migration of circulating CD34+ cells predicted cardiovascular mortality at 18 months after revascularization. This study aimed to provide long-term validation and mechanistic understanding of the biomarker. RESEARCH DESIGN AND METHODS: The association between CD34+ cell migration and cardiovascular mortality was reassessed at 6 years after revascularization. In a new series of T2D-CLI and control subjects, immuno-sorted bone marrow CD34+ cells were profiled for miRNA expression and assessed for apoptosis and angiogenesis activity. The differentially regulated miRNA-21 and its proapoptotic target, PDCD4, were titrated to verify their contribution in transferring damaging signals from CD34+ cells to endothelial cells. RESULTS: Multivariable regression analysis confirmed that CD34+ cell migration forecasts long-term cardiovascular mortality. CD34+ cells from T2D-CLI patients were more apoptotic and less proangiogenic than those from control subjects and featured miRNA-21 downregulation, modulation of several long noncoding RNAs acting as miRNA-21 sponges, and upregulation of the miRNA-21 proapoptotic target PDCD4. Silencing miR-21 in control CD34+ cells phenocopied the T2D-CLI cell behavior. In coculture, T2D-CLI CD34+ cells imprinted naive endothelial cells, increasing apoptosis, reducing network formation, and modulating the TUG1 sponge/miRNA-21/PDCD4 axis. Silencing PDCD4 or scavenging reactive oxygen species protected endothelial cells from the negative influence of T2D-CLI CD34+ cells. CONCLUSIONS: Migration of CD34+ cells predicts long-term cardiovascular mortality in T2D-CLI patients. An altered paracrine signaling conveys antiangiogenic and proapoptotic features from CD34+ cells to the endothelium. This damaging interaction may increase the risk for life-threatening complications.


Asunto(s)
Antígenos CD34/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Enfermedades Cardiovasculares/mortalidad , Diabetes Mellitus Tipo 2 , Células Endoteliales/fisiología , Isquemia/diagnóstico , MicroARNs/metabolismo , Proteínas de Unión al ARN/metabolismo , Adulto , Anciano , Antígenos CD34/sangre , Proteínas Reguladoras de la Apoptosis/sangre , Proteínas Reguladoras de la Apoptosis/genética , Biomarcadores/sangre , Biomarcadores/metabolismo , Células Sanguíneas/fisiología , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/diagnóstico , Estudios de Casos y Controles , Movimiento Celular/genética , Células Cultivadas , Enfermedad Crítica , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/mortalidad , Angiopatías Diabéticas/diagnóstico , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/mortalidad , Células Endoteliales/metabolismo , Extremidades/irrigación sanguínea , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Isquemia/sangre , Isquemia/mortalidad , Masculino , MicroARNs/sangre , MicroARNs/genética , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Pronóstico , Proteínas de Unión al ARN/sangre , Proteínas de Unión al ARN/genética , Transducción de Señal/fisiología
2.
Diabetologia ; 62(7): 1315, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31115642

RESUMEN

Unfortunately, three errors were made in the conversion of HbA1c to per cent values.

3.
Diabetologia ; 62(7): 1275-1290, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31001672

RESUMEN

AIMS/HYPOTHESIS: Previous studies have shown that diabetes mellitus destabilises the integrity of the microvasculature in different organs by damaging the interaction between pericytes and endothelial cells. In bone marrow, pericytes exert trophic functions on endothelial cells and haematopoietic cells through paracrine mechanisms. However, whether bone marrow pericytes are a target of diabetes-induced damage remains unknown. Here, we investigated whether type 2 diabetes can affect the abundance and function of bone marrow pericytes. METHODS: We conducted an observational clinical study comparing the abundance and molecular/functional characteristics of CD146+ pericytes isolated from the bone marrow of 25 individuals without diabetes and 14 individuals with uncomplicated type 2 diabetes, referring to our Musculoskeletal Research Unit for hip reconstructive surgery. RESULTS: Immunohistochemistry revealed that diabetes causes capillary rarefaction and compression of arteriole size in bone marrow, without changing CD146+ pericyte counts. These data were confirmed by flow cytometry on freshly isolated bone marrow cells. We then performed an extensive functional and molecular characterisation of immunosorted CD146+ pericytes. Type 2 diabetes caused a reduction in pericyte proliferation, viability, migration and capacity to support in vitro angiogenesis, while inducing apoptosis. AKT is a key regulator of the above functions and its phosphorylation state is reportedly reduced in the bone marrow endothelium of individuals with diabetes. Surprisingly, we could not find a difference in AKT phosphorylation (at either Ser473 or Thr308) in bone marrow pericytes from individuals with and without diabetes. Nonetheless, the angiocrine signalling reportedly associated with AKT was found to be significantly downregulated, with lower levels of fibroblast growth factor-2 (FGF2) and C-X-C motif chemokine ligand 12 (CXCL12), and activation of the angiogenesis inhibitor angiopoietin 2 (ANGPT2). Transfection with the adenoviral vector carrying the coding sequence for constitutively active myristoylated AKT rescued functional defects and angiocrine signalling in bone marrow pericytes from diabetic individuals. Furthermore, an ANGPT2 blocking antibody restored the capacity of pericytes to promote endothelial networking. CONCLUSIONS/INTERPRETATION: This is the first demonstration of pericyte dysfunction in bone marrow of people with type 2 diabetes. An altered angiocrine signalling from pericytes may participate in bone marrow microvascular remodelling in individuals with diabetes.


Asunto(s)
Células de la Médula Ósea/patología , Diabetes Mellitus Tipo 2/patología , Pericitos/patología , Adulto , Anciano , Anciano de 80 o más Años , Células Endoteliales/patología , Femenino , Citometría de Flujo , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Transducción de Señal/fisiología
4.
Diabetes ; 67(7): 1380-1394, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29703845

RESUMEN

Fat accumulates in bone marrow (BM) of patients with diabetes. In this study, we investigated the mechanisms and consequences of this phenomenon. BM mesenchymal stromal cells (BM-MSCs) from patients with type 2 diabetes (T2D) constitutively express adipogenic markers and robustly differentiate into adipocytes (ADs) upon in vitro induction as compared with BM-MSCs from subjects without diabetes. Moreover, BM-ADs from subjects with T2D (T2D BM-ADs) paracrinally stimulate a transcriptional adipogenic program in BM-MSCs. Antagonism of MCP-1, a chemokine pivotally expressed in T2D BM-ADs, prevented the T2D BM-AD secretome from converting BM-MSCs into ADs. Mechanistic validation of human data was next performed in an obese T2D mouse model. Systemic antagonism of MCP-1 improved metabolic control, reduced BM fat, and increased osteocyte density. It also indirectly re-established the abundance of long-term versus short-term hematopoietic stem cells. We reveal a diabetic feedback loop in which 1) BM-MSCs are constitutively inclined to make ADs, and 2) mature BM-ADs, via secreted MCP-1, relentlessly fuel BM-MSC determination into new fat. Pharmacological inhibition of MCP-1 signaling can contrast this vicious cycle, restoring, at least in part, the balance between adipogenesis and hematopoiesis in BM from subjects with T2D.


Asunto(s)
Adipocitos/metabolismo , Células de la Médula Ósea/patología , Quimiocina CCL2/metabolismo , Diabetes Mellitus Tipo 2 , Células Madre Hematopoyéticas/patología , Células Madre Mesenquimatosas/metabolismo , Adipocitos/efectos de los fármacos , Adipocitos/patología , Adiposidad/efectos de los fármacos , Adiposidad/genética , Adulto , Anciano , Anciano de 80 o más Años , Células de la Médula Ósea/metabolismo , Recuento de Células , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , Quimiocina CCL2/antagonistas & inhibidores , Quimiocina CCL2/genética , Quimiocina CCL2/farmacología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Retroalimentación Fisiológica/fisiología , Femenino , Hematopoyesis/efectos de los fármacos , Hematopoyesis/genética , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/fisiología , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/patología , Persona de Mediana Edad
5.
Pharmacol Ther ; 171: 30-42, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27916653

RESUMEN

Pericytes are a heterogeneous population of cells located in the blood vessel wall. They were first identified in the 19th century by Rouget, however their biological role and potential for drug targeting have taken time to be recognised. Isolation of pericytes from several different tissues has allowed a better phenotypic and functional characterization. These findings revealed a tissue-specific, multi-functional group of cells with multilineage potential. Given this emerging evidence, pericytes have acquired specific roles in pathobiological events in vascular diseases. In this review article, we will provide a compelling overview of the main diseases in which pericytes are involved, from well-established mechanisms to the latest findings. Pericyte involvement in diabetes and cancer will be discussed extensively. In the last part of the article we will review therapeutic approaches for these diseases in light of the recently acquired knowledge. To unravel pericyte-related vascular pathobiological events is pivotal not only for more tailored treatments of disease but also to establish pericytes as a therapeutic tool.


Asunto(s)
Isquemia/fisiopatología , Pericitos/citología , Enfermedades Vasculares/fisiopatología , Animales , Diabetes Mellitus/fisiopatología , Diabetes Mellitus/terapia , Humanos , Isquemia/terapia , Terapia Molecular Dirigida , Neoplasias/patología , Neoplasias/terapia , Enfermedades Vasculares/terapia
6.
Diabetes ; 65(12): 3691-3704, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27600065

RESUMEN

Critical limb ischemia (CLI), foot ulcers, former amputation, and impaired regeneration are independent risk factors for limb amputation in subjects with diabetes. The present work investigates whether and by which mechanism diabetes negatively impacts on functional properties of muscular pericytes (MPs), which are resident stem cells committed to reparative angiomyogenesis. We obtained muscle biopsy samples from patients with diabetes who were undergoing major limb amputation and control subjects. Diabetic muscles collected at the rim of normal tissue surrounding the plane of dissection showed myofiber degeneration, fat deposition, and reduction of MP vascular coverage. Diabetic MPs (D-MPs) display ultrastructural alterations, a differentiation bias toward adipogenesis at the detriment of myogenesis and an inhibitory activity on angiogenesis. Furthermore, they have an imbalanced redox state, with downregulation of the antioxidant enzymes superoxide dismutase 1 and catalase, and activation of the pro-oxidant protein kinase C isoform ß-II (PKCßII)-dependent p66Shc signaling pathway. A reactive oxygen species scavenger or, even more effectively, clinically approved PKCßII inhibitors restore D-MP angiomyogenic activity. Inhibition of the PKCßII-dependent p66Shc signaling pathway could represent a novel therapeutic approach for the promotion of muscle repair in individuals with diabetes.


Asunto(s)
Isquemia/metabolismo , Músculo Esquelético/metabolismo , Pericitos/metabolismo , Proteína Quinasa C beta/metabolismo , Anciano , Western Blotting , Proliferación Celular/efectos de los fármacos , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inmunohistoquímica , Técnicas In Vitro , Masculino , Microscopía Electrónica de Transmisión , Músculo Esquelético/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Pericitos/efectos de los fármacos , Ftalimidas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
7.
Endocrinology ; 157(11): 4246-4256, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27583789

RESUMEN

Obesity during pregnancy has a long-term effect on the health of the offspring including risk of developing the metabolic syndrome. Using a mouse model of maternal diet-induced obesity, we employed a genome-wide approach to investigate the microRNA (miRNA) and miRNA transcription profile in adipose tissue to understand mechanisms through which this occurs. Male offspring of diet-induced obese mothers, fed a control diet from weaning, showed no differences in body weight or adiposity at 8 weeks of age. However, offspring from the obese dams had up-regulated cytokine (Tnfα; P < .05) and chemokine (Ccl2 and Ccl7; P < .05) signaling in their adipose tissue. This was accompanied by reduced expression of miR-706, which we showed can directly regulate translation of the inflammatory proteins IL-33 (41% up-regulated; P < .05) and calcium/calmodulin-dependent protein kinase 1D (30% up-regulated; P < .01). We conclude that exposure to obesity during development primes an inflammatory environment in adipose tissue that is independent of offspring adiposity. Programming of adipose tissue miRNAs that regulate expression of inflammatory signaling molecules may be a contributing mechanism.


Asunto(s)
Tejido Adiposo/metabolismo , Intercambio Materno-Fetal/fisiología , Obesidad/metabolismo , Obesidad/fisiopatología , Tejido Adiposo/inmunología , Adiposidad/genética , Adiposidad/fisiología , Animales , Peso Corporal/fisiología , Quimiocinas/metabolismo , Citocinas/metabolismo , Femenino , Interleucina-33/metabolismo , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Intercambio Materno-Fetal/genética , Ratones , MicroARNs , Embarazo
8.
Mol Metab ; 3(3): 325-33, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24749062

RESUMEN

We determined the effects of maternal diet-induced obesity on offspring adipose tissue insulin signalling and miRNA expression in the aetiology of insulin resistance in later life. Although body composition and glucose tolerance of 8-week-old male offspring of obese dams were not dysregulated, serum insulin was significantly (p<0.05) elevated. Key insulin signalling proteins in adipose tissue were down-regulated, including the insulin receptor, catalytic (p110ß) and regulatory (p85α) subunits of PI3K as well as AKT1 and 2 (all p<0.05). The largest reduction observed was in IRS-1 protein (p<0.001), which was regulated post-transcriptionally. Concurrently, miR-126, which targets IRS-1, was up-regulated (p<0.05). These two features were maintained in isolated primary pre-adipocytes and differentiated adipocytes in-vitro. We have therefore established that maternal diet-induced obesity programs adipose tissue insulin resistance. We hypothesise that maintenance of the phenotype in-vitro strongly suggests that this mechanism is cell autonomous and may drive insulin resistance in later life.

9.
Lancet Oncol ; 13(6): e249-58, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22652233

RESUMEN

Since the identification of microRNAs (miRNAs) in 1993, and the subsequent discovery of their highly conserved nature in 2000, the amount of research into their function--particularly how they contribute to malignancy--has greatly increased. This class of small RNA molecules control gene expression and provide a previously unknown control mechanism for protein synthesis. As such, it is unsurprising that miRNAs are now known to play an essential part in malignancy, functioning as tumour suppressors and oncogenes. This Review summarises the present understanding of how miRNAs operate at the molecular level; how their dysregulation is a crucial part of tumour formation, maintenance, and metastasis; how they can be used as biomarkers for disease type and grade; and how miRNA-based treatments could be used for diverse types of malignancies.


Asunto(s)
Biomarcadores de Tumor/genética , Terapia Genética/métodos , MicroARNs/genética , Terapia Molecular Dirigida/métodos , Neoplasias/genética , Neoplasias/terapia , Antineoplásicos/uso terapéutico , Femenino , Predicción , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Humanos , Masculino , MicroARNs/metabolismo , Neoplasias/fisiopatología , Medicina de Precisión/tendencias , Resultado del Tratamiento , Reino Unido
10.
Am J Physiol Cell Physiol ; 302(9): C1394-404, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22322975

RESUMEN

Sustained overactivation of RhoA is a common component for the pathogenesis of several cardiovascular disorders, including hypertension. Although activity of Rho proteins depends on Rho exchange factors (Rho-GEFs), the identity of Rho-GEFs expressed in vascular smooth muscle cells (VSMC) and participating in the control of Rho protein activity and Rho-dependent functions remains unknown. To address this question, we analyzed by quantitative RT-PCR the expression profile of 28 RhoA-GEFs in arteries of normotensive (saline-treated) and hypertensive (ANG II-treated) rats. Sixteen RhoA-GEFs were downregulated in mesenteric arteries of hypertensive rats, among which nine are also downregulated in cultured VSMC stimulated by ANG II (100 nM, 48 h), suggesting a direct effect of ANG II. Inhibition of type 1 ANG II receptors (losartan, 1 µM) or Rho kinase (fasudil, 10 µM) prevented ANG II-induced RhoA-GEF downregulation. Functionally, ANG II-induced downregulation of RhoA-GEFs is associated with decreased Rho kinase activation in response to endothelin-1, norepinephrine, and U-46619. This work thus identifies a group of RhoA-GEFs that controls RhoA and RhoA-dependent functions in VSMC, and a negative feedback of RhoA/Rho kinase activity on the expression of these RhoA-GEFs that may play an adaptative role to limit RhoA/Rho kinase activation.


Asunto(s)
Retroalimentación Fisiológica/fisiología , Factores de Intercambio de Guanina Nucleótido/biosíntesis , Hipertensión/fisiopatología , Músculo Liso Vascular/metabolismo , Quinasas Asociadas a rho/metabolismo , Angiotensina II/metabolismo , Angiotensina II/toxicidad , Animales , Arterias/metabolismo , Western Blotting , Perfilación de la Expresión Génica , Hipertensión/inducido químicamente , Masculino , Músculo Liso Vascular/fisiopatología , ARN Interferente Pequeño , Ratas , Ratas Endogámicas WKY , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/fisiología , Transfección
11.
Biochem Soc Trans ; 38(6): 1565-70, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21118127

RESUMEN

T2D (Type 2 diabetes mellitus) is a major health issue that has reached epidemic status worldwide. T2D is a progressive metabolic disorder characterized by reduced insulin sensitivity, insulin resistance and pancreatic ß-cell dysfunction. Improper treatment of TD2 can lead to severe complications such as heart disease, stroke, kidney failure, blindness and nerve damage. The aetiology and molecular mechanisms of T2D are not fully understood, but compelling evidence points to a link between T2D, obesity, dyslipidaemia and insulin resistance. Although T2D seems to be strongly linked to environmental factors such as nutrition and lifestyle, studies have shown that genetic factors, such as polymorphisms associated with metabolic genes, imprinting, fetal programming and miRNA (microRNA) expression, could also contribute to the development of this disease. miRNAs are small 22-25-nt-long untranslated RNAs that negatively regulate the translation of mRNAs. miRNAs are involved in a large number of biological functions such as development, metabolism, immunity and diseases such as cancer, cardiovascular diseases and diabetes. The present review examines the various miRNAs that have been identified as being potentially involved in T2D, focusing on the insulin-sensitive organs: white adipose tissue, liver, skeletal muscle and the insulin-producing pancreatic ß-cells.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , MicroARNs/genética , MicroARNs/metabolismo , Tejido Adiposo/fisiología , Animales , Diabetes Mellitus Tipo 2/etiología , Regulación de la Expresión Génica , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Resistencia a la Insulina , Células Secretoras de Insulina/metabolismo , Metabolismo de los Lípidos , Músculo Esquelético/fisiología , Obesidad/metabolismo
12.
Cardiovasc Res ; 86(1): 131-40, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19969623

RESUMEN

AIMS: Rho guanine nucleotide exchange factors (Rho GEFs) are responsible for Rho protein activation by catalyzing the exchange of GDP for GTP. Although overactivation of Rho proteins is a common component of the pathogenesis of vascular disorders, the molecular mechanisms and the Rho GEFs regulating Rho protein activity and Rho-dependent functions in vascular smooth muscle cells (VSMC) are still unknown. The aim of this study was thus to identify Rho GEFs involved in the regulation of VSMC functions. METHODS AND RESULTS: By a functional screening based on small interfering RNA (siRNA)-mediated silencing of 27 Rho GEFs, we found that only silencing of the Rho GEF Vav3 inhibited rat VSMC proliferation. Conversely, overexpression of Vav3 potentiated VSMC proliferation, whereas the catalytically inactive Vav3 mutant had no effect. The stimulatory effect of Vav3 on VSMC proliferation was inhibited by the Src tyrosine kinase inhibitor SU6656 and by co-expression of the dominant-negative Rac1-N17 mutant. In agreement with this observation, expression of Vav3 induced enrichment of Rac1 to the membrane, activation of its effector PAK, and stimulated VSMC migration. Increased levels of Vav3 transcripts were found in stented arteries and arteries from hypertensive rats. Furthermore, siRNA targeting Vav3 decreased arterial wall cell proliferation. CONCLUSION: The Rho GEF Vav3 controls VSMC proliferation and migration through activation of Rac1/PAK signalling. Vav3 is a convergent point mediating Rac1 activation in response to different upstream mediators that promote VSMC proliferation and migration and thus appears to be a new potential therapeutic target that could be used to limit vascular proliferative diseases.


Asunto(s)
Movimiento Celular/fisiología , Músculo Liso Vascular/citología , Músculo Liso Vascular/fisiología , Proteínas Proto-Oncogénicas c-vav/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Aorta/citología , Aorta/fisiología , División Celular/fisiología , Células Cultivadas , Inhibidores Enzimáticos/farmacología , NG-Nitroarginina Metil Éster/farmacología , Proteínas Proto-Oncogénicas c-vav/genética , ARN Interferente Pequeño , Ratas , Ratas Endogámicas WKY , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Quinasas p21 Activadas/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteínas de Unión al GTP rho/genética
13.
Genes Dev ; 16(4): 427-38, 2002 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-11850406

RESUMEN

Mechanisms that regulate signal propagation through the ERK/MAPK pathway are still poorly understood. Several proteins are suspected to play critical roles in this process. One of these is Kinase Suppressor of Ras (KSR), a component previously identified in RAS-dependent genetic screens in Drosophila and Caenorhabditis elegans. Here, we show that KSR functions upstream of MEK within the ERK/MAPK module. In agreement with this, we found that KSR facilitates the phosphorylation of MEK by RAF. We further show that KSR associates independently with RAF and MEK, and that these interactions lead to the formation of a RAF/MEK complex, thereby positioning RAF in close proximity to its substrate MEK. These findings suggest that KSR functions as a scaffold that assembles the RAF/MEK functional pair.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/enzimología , Sistema de Señalización de MAP Quinasas/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas/fisiología , Proteínas Proto-Oncogénicas c-raf/fisiología , Animales , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Sustancias Macromoleculares , Fosforilación , Proteínas Quinasas/genética , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes de Fusión/fisiología , Transfección , Proteínas ras/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...