RESUMEN
The qualified presumption of safety (QPS) approach was developed to provide a regularly updated generic pre-evaluation of the safety of microorganisms intended for use in the food or feed chains. Safety concerns identified for a taxonomic unit (TU) are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications' which should be assessed at strain and/or product level by EFSA's Scientific Panels. The generic qualification 'the strains should not harbour any acquired antimicrobial resistance (AMR) genes to clinically relevant antimicrobials' applies to all QPS bacterial TUs. The different EFSA risk assessment areas use the same approach to assess the qualification related to AMR genes. In this statement, the terms 'intrinsic' and 'acquired' AMR genes were defined for the purpose of EFSA's risk assessments, and they apply to bacteria used in the food and feed chains. A bioinformatic approach is proposed for demonstrating the 'intrinsic'/'acquired' nature of an AMR gene. All AMR genes that confer resistance towards 'critically important', 'highly important' and 'important' antimicrobials, as defined by the World Health Organisation (WHO), found as hits, need to be considered as hazards (for humans, animals and environment) and need further assessment. Genes identified as responsible for 'intrinsic' resistance could be considered as being of no concern in the frame of the EFSA risk assessment. 'Acquired' AMR genes resulting in a resistant phenotype should be considered as a concern. If the presence of the 'acquired' AMR gene is not leading to phenotypic resistance, further case-by-case assessment is necessary.
RESUMEN
Fresh baby spinach leaves are popular in salads and are sold as chilled and plastic-packed products. They are of high nutritional value but very perishable due to microbial contamination and enzymatic browning resulting from leaf senescence. Therefore, innovative food processing methods such as plasma-activated water (PAW) treatment are being explored regarding their applicability for ensuring food safety. PAW's impact on food quality and shelf-life extension has, however, not been investigated extensively in vegetables so far. In the present study, a comprehensive metabolomic analysis was performed to determine possible changes in the metabolite contents of spinach leaves stored in a refrigerated state for eight days. Liquid chromatography high-resolution mass spectrometry, followed by stringent biostatistics, was used to compare the metabolomes in control, tap-water-rinsed or PAW-rinsed samples. No significant differences were discernible between the treatment groups at the beginning or end of the storage period. The observed loss of nutrients and activation of catabolic pathways were characteristic of a transition into the senescent state. Nonetheless, the presence of several polyphenolic antioxidants and γ-linolenic acid in the PAW-treated leaves indicated a significant increase in stress resistance and health-promoting antioxidant capacity in the sample. Furthermore, the enhancement of carbohydrate-related metabolisms indicated a delay in the senescence development. These findings demonstrated the potential of PAW to benefit food quality and the shelf-life of fresh spinach leaves.
RESUMEN
In this study, sodium alginate (SA)-based, eco-friendly nanocomposites films were synthesized for potential food packaging applications using silver nitrate (AgNO3) as the metal precursor, reactive nitrogen and oxygen species (RNOS) created within plasma activated water (PAW), or through cold plasma treatment (CP) as reducing agent and SA as stabilizing agent. The formation of silver nanoparticles (AgNPs) was confirmed via the absorption peaks observed between 440 and 450 nm in UV-vis spectroscopy. The tensile strength (TS) and tensile modulus (TM) of the nanocomposite films were significantly higher than those of the SA films. An increase in the TS was also observed as the AgNP concentration was increased from 1 to 5 mM. The storage modulus (G') of the nanocomposite solution was higher than that of the SA solution. The synthesis of AgNPs resulted both in a higher solution viscosity and a more marked shear-thinning effect. The synthesized AgNPs showed antimicrobial activity against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The AgNPs were spherical in shape with an average size of 22 nm.
RESUMEN
Fossil-based plastic materials are an integral part of modern life. In food packaging, plastics have a highly important function in preserving food quality and safety, ensuring adequate shelf life, and thereby contributing to limiting food waste. Meanwhile, the global stream of plastics into the oceans is increasing exponentially, triggering worldwide concerns for the environment. There is an urgent need to reduce the environmental impacts of packaging waste, a matter raising increasing consumer awareness. Shifting part of the focus toward packaging materials from renewable resources is one promising strategy. This review provides an overview of the status and future of biobased and biodegradable films used for food packaging applications, highlighting the effects on food shelf life and quality. Potentials, limitations, and promising modifications of selected synthetic biopolymers; polylactic acid, polybutylene succinate, and polyhydroxyalkanoate; and natural biopolymers such as cellulose, starch, chitosan, alginate, gelatine, whey, and soy protein are discussed. Further, this review provides insight into the connection between biobased packaging materials and innovative technologies such as high pressure, cold plasma, microwave, ultrasound, and ultraviolet light. The potential for utilizing such technologies to improve biomaterial barrier and mechanical properties as well as to aid in improving overall shelf life for the packaging system by in-pack processing is elaborated on.
Asunto(s)
Embalaje de Alimentos , Eliminación de Residuos , Alimentos , Calidad de los Alimentos , PlásticosRESUMEN
Many bioactive peptides have been described from marine sources and much marine biomass is still not explored or utilized in products. Marine peptides can be developed into a variety of products, and there is a significant interest in the use of bioactive peptides from marine sources for nutraceuticals or functional foods. We present here a mini-review collecting the knowledge about the value chain of bioactive peptides from marine sources used in nutraceuticals and functional foods. Many reports describe bioactive peptides from marine sources, but in order to make these available to the consumers in commercial products, it is important to connect the bioactivities associated with these peptides to commercial opportunities and possibilities. In this mini-review, we present challenges and opportunities for the commercial use of bioactive peptides in nutraceuticals and functional food products. We start the paper by introducing approaches for isolation and identification of bioactive peptides and candidates for functional foods. We further discuss market-driven innovation targeted to ensure that isolated peptides and suggested products are marketable and acceptable by targeted consumers. To increase the commercial potential and ensure the sustainability of the identified bioactive peptides and products, we discuss scalability, regulatory frameworks, production possibilities and the shift towards greener technologies. Finally, we discuss some commercial products from marine peptides within the functional food market. We discuss the placement of these products in the larger picture of the commercial sphere of functional food products from bioactive peptides.
Asunto(s)
Suplementos Dietéticos , Alimentos Funcionales , Humanos , PéptidosRESUMEN
Microbes from the three domains of life, Bacteria, Archaea, and Eukarya, share the need to sense and respond to changes in the external and internal concentrations of protons. When the proton concentration is high, acidic conditions prevail and cells must respond appropriately to ensure that macromolecules and metabolic processes are sufficiently protected to sustain life. While, we have learned much in recent decades about the mechanisms that microbes use to cope with acid, including the unique challenges presented by organic acids, there is still much to be gained from developing a deeper understanding of the effects and responses to acid in microbes. In this perspective article, we survey the key molecular mechanisms known to be important for microbial survival during acid stress and discuss how this knowledge might be relevant to microbe-based applications and processes that are consequential for humans. We discuss the research approaches that have been taken to investigate the problem and highlight promising new avenues. We discuss the influence of acid on pathogens during the course of infections and highlight the potential of using organic acids in treatments for some types of infection. We explore the influence of acid stress on photosynthetic microbes, and on biotechnological and industrial processes, including those needed to produce organic acids. We highlight the importance of understanding acid stress in controlling spoilage and pathogenic microbes in the food chain. Finally, we invite colleagues with an interest in microbial responses to low pH to participate in the EU-funded COST Action network called EuroMicropH and contribute to a comprehensive database of literature on this topic that we are making publicly available.
RESUMEN
PURPOSE: There is considerable interest in the effects of the intestinal microbiota (IM) composition, its activities in relation with the metabolism of dietary substrates and the impact these effects may have in the development and prevention of certain non-communicable diseases. It is acknowledged that a complex interdependence exists between the IM and the mammalian host and that the IM possesses a far greater diversity of genes and repertoire of metabolic and enzymatic capabilities than their hosts. However, full knowledge of the metabolic activities and interactions of the IM and the functional redundancy that may exist are lacking. Thus, the current review aims to assess recent literature relating to the role played by the IM in the absorption and metabolism of key nutrients and non-nutrients. METHODS: A systematic review (PROSPERO registration: CRD42015019087) was carried out focussing on energy and the following candidate dietary substrates: protein, carbohydrate, fat, fibre, resistant starch (RS), and polyphenols to further understand the effect of the IM on the dietary substrates and the resulting by-products and host impacts. Particular attention was paid to the characterisation of the IM which are predominantly implicated in each case, changes in metabolites, and indirect markers and any potential impacts on the host. RESULTS: Studies show that the IM plays a key role in the metabolism of the substrates studied. However, with the exception of studies focusing on fibre and polyphenols, there have been relatively few recent human studies specifically evaluating microbial metabolism. In addition, comparison of the effects of the IM across studies was difficult due to lack of specific analysis/description of the bacteria involved. Considerable animal-derived data exist, but experience suggests that care must be taken when extrapolating these results to humans. Nevertheless, it appears that the IM plays a role in energy homeostasis and that protein microbial breakdown and fermentation produced ammonia, amines, phenols and branch chain fatty acids, and a greater diversity in the microbes present. Few recent studies appear to have evaluated the effect of the IM composition and metabolism per se in relation with digestible dietary carbohydrate or fat in humans. Intakes of RS and prebiotics altered levels of specific taxa that selectively metabolised specific prebiotic/carbohydrate-type substances and levels of bifidobacteria and lactobacilli were observed to increase. In controlled human studies, consistent data exist that show a correlation between the intake of fibre and an increase in bifidobacteria and short-chain fatty acids, in particular butyrate, which leads to lower intestinal pH. Dietary polyphenols rely on modification either by host digestive enzymes or those derived from the IM for absorption to occur. In the polyphenol-related studies, a large amount of inter-individual variation was observed in the microbial metabolism and absorption of certain polyphenols. CONCLUSIONS: The systematic review demonstrates that the IM plays a major role in the breakdown and transformation of the dietary substrates examined. However, recent human data are limited with the exception of data from studies examining fibres and polyphenols. Results observed in relation with dietary substrates were not always consistent or coherent across studies and methodological limitations and differences in IM analyses made comparisons difficult. Moreover, non-digestible components likely to reach the colon are often not well defined or characterised in studies making comparisons between studies difficult if not impossible. Going forward, further rigorously controlled randomised human trials with well-defined dietary substrates and utilizing omic-based technologies to characterise and measure the IM and their functional activities will advance the field. Current evidence suggests that more detailed knowledge of the metabolic activities and interactions of the IM hold considerable promise in relation with host health.
Asunto(s)
Bacterias/metabolismo , Alimentos , Microbioma Gastrointestinal/fisiología , Animales , Carbohidratos de la Dieta/metabolismo , Grasas de la Dieta/metabolismo , Fibras de la Dieta/metabolismo , Proteínas en la Dieta/metabolismo , Digestión , Metabolismo Energético , Homeostasis , Humanos , Isoflavonas/metabolismo , Polifenoles/metabolismo , Almidón/metabolismoRESUMEN
Planktonic cells typically found in liquid systems, are routinely used for building predictive models or assessing the efficacy of food preserving technologies. However, freely suspended cells often show different susceptibility to environmental hurdles than colony cells in solid matrices. Limited oxygen, water and nutrient availability, metabolite accumulation and physical constraints due to cell immobilization in the matrix, are main factors affecting cell growth. Moreover, intra- and inter-colony interactions, as a consequence of the initial microbial load in solid systems, may affect microbial physiology. Predictive food microbiology approaches are moving toward a more realistic resemblance to food products, performing studies in structured solid systems instead of liquids. Since structured systems promote microbial cells to become immobilized and grow as colonies, it is essential to study the colony behavior, not only for food safety assurance systems, but also for understanding cell physiology and optimizing food production processes in solid matrices. Traditionally, microbial dynamics in solid systems have been assessed with a macroscopic approach by applying invasive analytical techniques; for instance, viable plate counting, which yield information about overall population. In the last years, this approach is being substituted by more mechanistically inspired ones at mesoscopic (colony) and microscopic (cell) levels. Therefore, non-invasive and in situ monitoring is mandatory for a deeper insight into bacterial colony dynamics. Several methodologies that enable high-throughput data collection have been developed, such as microscopy-based techniques coupled with image analysis and OD-based measurements in microplate readers. This research paper provides an overview of non-invasive in situ techniques to monitor bacterial colonies in solid (model) food and emphasizes their advantages and inconveniences in terms of accuracy, performance and output information.