Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Life Sci ; 239: 116872, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31525427

RESUMEN

AIMS: G protein-coupled receptor (GPCR) kinases (GRKs) are mainly involved in the desensitization of GPCRs. Among them, GRK2 has been described to be upregulated in many pathological conditions and its crucial role in cardiac hypertrophy, hypertension, and heart failure promoted the search for pharmacological inhibitors of its activity. There have been several reports of potent and selective inhibitors of GRK2, most of them directed to the kinase domain of the protein. However, the homologous to the regulator of G protein signaling (RH) domain of GRK2 has also been shown to regulate GPCRs signaling. Herein, we searched for potential inhibitors of receptor desensitization mediated by RH domain of GRK2. MATERIALS AND METHODS: We performed a docking-based virtual screening utilizing the crystal structure of GRK2 to search for potential inhibitors of the interaction between GRK2 and Gαq protein. To evaluate the biological activity of compounds we measured, calcium response of histamine H1 receptor (H1R) using Fura-2AM dye and H1R internalization by saturation binding experiments in A549 cells. GRK2(45-178)GFP translocation was determined in HeLa cells through confocal fluorescence imaging. KEY FINDINGS: We identified inhibitors of GRK2 able to reduce the RH mediated desensitization of the histamine H1 receptor and GRK2 translocation to plasma membrane. Also candidates presented adequate lipophilia and cytotoxicity profile. SIGNIFICANCE: We obtained compounds with the ability of reducing RH mediated actions of GRK2 that can be useful as a starting point in the development of novel drug candidates aimed to treat pathologies were GRK2 plays a key role.


Asunto(s)
Quinasa 2 del Receptor Acoplado a Proteína-G/antagonistas & inhibidores , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Células A549 , Simulación por Computador , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Quinasa 2 del Receptor Acoplado a Proteína-G/química , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Células HeLa , Humanos , Tamizaje Masivo , Simulación del Acoplamiento Molecular/métodos , Fosforilación , Unión Proteica , Dominios Proteicos , Inhibidores de Proteínas Quinasas/química , Receptores Histamínicos H1/metabolismo , Transducción de Señal
2.
PLoS One ; 12(8): e0183278, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28813513

RESUMEN

Mas receptor (MasR) is a G protein-coupled receptor proposed as a candidate for mediating the angiotensin (Ang)-converting enzyme 2-Ang (1-7) protective axis of renin-angiotensin system. Because the role of this receptor is not definitively clarified, determination of MasR tissue distribution and expression levels constitutes a critical knowledge to fully understanding its function. Commercially available antibodies have been widely employed for MasR protein localization and quantification, but they have not been adequately validated. In this study, we carried on an exhaustive evaluation of four commercial MasR antibodies, following previously established criteria. Western Blotting (WB) and immunohistochemistry studies starting from hearts and kidneys from wild type (WT) mice revealed that antibodies raised against different MasR domains yielded different patterns of reactivity. Furthermore, staining patterns appeared identical in samples from MasR knockout (MasR-KO) mice. We verified by polymerase chain reaction analysis that the MasR-KO mice used were truly deficient in this receptor as MAS transcripts were undetectable in either heart or kidney from this animal model. In addition, we evaluated the ability of the antibodies to detect the human c-myc-tagged MasR overexpressed in human embryonic kidney cells. Three antibodies were capable of detecting the MasR either by WB or by immunofluorescence, reproducing the patterns obtained with an anti c-myc antibody. In conclusion, although three of the selected antibodies were able to detect MasR protein at high expression levels observed in a transfected cell line, they failed to detect this receptor in mice tissues at physiological expression levels. As a consequence, validated antibodies that can recognize and detect the MasR at physiological levels are still lacking.


Asunto(s)
Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Anticuerpos/metabolismo , Western Blotting , Línea Celular , Técnica del Anticuerpo Fluorescente , Células HEK293 , Humanos , Inmunohistoquímica , Riñón/metabolismo , Ratones , Ratones Noqueados , Miocardio/metabolismo , Proto-Oncogenes Mas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...