Asunto(s)
Congresos como Asunto , Genética Médica , Genómica/métodos , Biología de Sistemas , HumanosRESUMEN
Multiple Sclerosis (MS) therapies approved so far are unable to effectively reverse the chronic phase of the disease or improve the remyelination process. Here our aim is to evaluate the effects of C-Phycocyanin (C-Pc), a biliprotein from Spirulina platensis with anti-oxidant, anti-inflammatory and cytoprotective properties, in a chronic model of experimental autoimmune encephalomyelitis (EAE) in mice. C-Pc (2, 4 or 8 mg/kg i.p.) or IFN-beta (2000 IU, s.c.) was administered daily once a day or every other day, respectively, starting at disease onset, which differ among EAE mice between 11 and 15 days postinduction. Histological and immunohistochemistry (anti-Mac-3, anti-CD3 and anti-APP) assessments were performed in spinal cord in the postinduction time. Global gene expression in the brain was analyzed with the Illumina Mouse WG-6_V2 BeadChip microarray and the expression of particular genes, assessed by qPCR using the Fast SYBR Green RT-PCR Master Mix. Oxidative stress parameters (malondialdehyde, peroxidation potential, CAT/SOD ratio and GSH) were determined spectrophoto-metrically. Results showed that C-Pc ameliorates the clinical deterioration of animals, an effect that expresses the reduction of the inflammatory infiltrates invading the spinal cord tissue, the axonal preservation and the down-regulation of IL-17 expression in brain tissue and serum. C-Pc and IFN-beta improved the redox status in mice subjected to EAE, while microarray analysis showed that both treatments shared a common subset of differentially expressed genes, although they also differentially modulated another subset of genes. Specifically, C-Pc mainly modulated the expression of genes related to remyelination, gliogenesis and axon-glia processes. Taken together, our results indicate that C-Pc has significant therapeutic effects against EAE, mediated by the dynamic regulation of multiple biological processes.
Asunto(s)
Antiinflamatorios/farmacología , Encefalomielitis Autoinmune Experimental/patología , Interferón beta/farmacología , Regeneración Nerviosa/efectos de los fármacos , Ficocianina/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Femenino , Expresión Génica/efectos de los fármacos , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacología , Análisis de Secuencia por Matrices de Oligonucleótidos , Estrés Oxidativo/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , Médula Espinal/efectos de los fármacos , Médula Espinal/patologíaRESUMEN
CIGB-552 is a second generation antitumor peptide that displays potent cytotoxicity in lung and colon cancer cells. The nuclear subproteome of HT-29 colon adenocarcinoma cells treated with CIGB-552 peptide was identified and analyzed [1]. This data article provides supporting evidence for the above analysis.
RESUMEN
The second generation peptide CIGB-552 has a pro-apoptotic effect on H460 non-small cell lung cancer cells and displays a potent cytotoxic effect in HT-29 colon adenocarcinoma cells though its action mechanism is ill defined. Here, we present the first proteomic study of peptide effect in HT-29 cells using subcellular fractionation, protein and peptide fractionation by DF-PAGE and LC-MS/MS peptide identification. In particular, we explored the nuclear proteome of HT-29 cells at a 5h treatment identifying a total of 68 differentially modulated proteins, 49 of which localize to the nucleus. The differentially modulated proteins were analyzed following a system biology approach. Results pointed to a modulation of apoptosis, oxidative damage removal, NF-κB activation, inflammatory signaling and of cell adhesion and motility. Further Western blot and flow-cytometry experiments confirmed both pro-apoptotic and anti-inflammatory effects of CIGB-552 peptide in HT-29 cells.
Asunto(s)
Adenocarcinoma , Antineoplásicos/farmacología , Péptidos de Penetración Celular/farmacología , Neoplasias del Colon , Proteínas de Neoplasias/biosíntesis , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Apoptosis/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Humanos , Proteómica , Transducción de Señal/efectos de los fármacosRESUMEN
Since the inflammatory response and oxidative stress are involved in the stroke cascade, we evaluated here the effects of Phycocyanobilin (PCB, the C-Phycocyanin linked tetrapyrrole) on PC12 cell survival, the gene expression and the oxidative status of hypoperfused rat brain. After the permanent bilateral common carotid arteries occlusion (BCCAo), the animals were treated with saline or PCB, taking samples 24h post-surgery. Global gene expression was analyzed with GeneChip Rat Gene ST 1.1 from Affymetrix; the expression of particular genes was assessed by the Fast SYBR Green RT-PCR Master Mix and Bioplex methods; and redox markers (MDA, PP, CAT, SOD) were evaluated spectrophotometrically. The PCB treatment prevented the H2O2 and glutamate induced PC12 cell injury assessed by the MTT assay, and modulated 190 genes (93 up- and 97 down-regulated) associated to several immunological and inflammatory processes in BCCAo rats. Furthermore, PCB positively modulated 19 genes mostly related to a detrimental pro-inflammatory environment and counteracted the oxidative imbalance in the treated BCCAo animals. Our results support the view of an effective influence of PCB on major inflammatory mediators in acute cerebral hypoperfusion. These results suggest that PCB has a potential to be a treatment for ischemic stroke for which further studies are needed.
Asunto(s)
Supervivencia Celular/efectos de los fármacos , Trastornos Cerebrovasculares/tratamiento farmacológico , Genes MHC Clase II/efectos de los fármacos , Inflamación/genética , Estrés Oxidativo/efectos de los fármacos , Ficobilinas/farmacología , Ficocianina/farmacología , Animales , Biomarcadores/metabolismo , Química Encefálica/efectos de los fármacos , Química Encefálica/genética , Trastornos Cerebrovasculares/fisiopatología , Colorantes , Citocinas/biosíntesis , Ácido Glutámico/metabolismo , Peróxido de Hidrógeno/farmacología , Masculino , Análisis por Micromatrices , Oxidación-Reducción , Células PC12 , Ficobilinas/aislamiento & purificación , Ficocianina/aislamiento & purificación , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Spirulina/química , Sales de Tetrazolio , Tiazoles , Factor A de Crecimiento Endotelial Vascular/metabolismoRESUMEN
We have demonstrated that the peptide L-2 designed from an alanine scanning of the Limulus-derived LALF32-51 region is a potential candidate for the anticancer therapy and its cell-penetrating capacity is an associated useful property. By the modification in the primary structure of L-2, a second-generation peptide (CIGB-552) was developed. However, the molecular mechanism underlying its cytotoxic activity remains partially unknown. In this study, it was shown that CIGB-552 increases the levels of COMMD1, a protein involved in copper homeostasis, sodium transport, and the NF-κB signaling pathway. We found that CIGB-552 induces ubiquitination of RelA and inhibits the antiapoptotic activity regulated by NF-κB, whereas the knockdown of COMMD1 blocks this effect. We also found that CIGB-552 decreases the antioxidant capacity and induces the peroxidation of proteins and lipids in the tumor cells. Altogether, this study provides new insights into the mechanism of action of the peptide CIGB-552, which could be relevant in the design of future anticancer therapies.