Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 894: 165000, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37343882

RESUMEN

Due to complex interactions between climate and land use changes, large forest fires have increased in frequency and severity over the last decades, impacting dramatically on biodiversity and society. In southern European countries affected by demographic challenges, fire risk and danger play special relevance at the wildland-urban interfaces (WUIs), where decision-making and land management have strong socio-ecological implications. WUIs have been historically typified according to both fire occurrence probability and settlement vulnerability, but those classifications lack generality regarding fire regime components. We aim to develop an integrated and comprehensive scheme for identifying the WUI typologies most at risk to fire severity across large territories. We selected fourteen large wildfires (over than 500 ha) occurred in Spain (2016-2021) containing different WUI scenarios. First, based on a building cartography and a multi-temporal series of Sentinel-2 imagery, each WUI was delimited and spatially characterized according to building density and pre-fire fuel characteristics (type, amount, and structure). Afterwards, a decision tree regression model was applied to identify the most relevant pre-fire vegetation parameters driving burn severity. The combined effect of the selected pre-fire vegetation drivers and the building density patterns on fire severity was evaluated using linear mixed models. Finally, the WUI typologies most prone to high burn severity were recognized using Tukey post-hoc tests. Results indicated that building density, land cover class and vegetation cover fraction determined fire severity in areas close to human settlements. Specifically, isolated, scattered and sparsely clustered buildings enclosed in a high-cover shrub matrix were the WUI typologies most susceptible to high-severity fires. These findings contribute to the development of appropriate strategies to minimize the risk of severe fires in WUIs and avoid potential losses of multiple ecosystem services valuable for society.

2.
Sci Total Environ ; 844: 157193, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-35810905

RESUMEN

Severe wildfires cause important changes in vegetation and soil properties in Mediterranean ecosystems. The aim of this work was to evaluate ecosystem multifunctionality through the study of burn severity short-term effects on different ecosystem functions and services. We selected the Cabrera wildfire (2017) in northwest Spain. Burn severity was quantified using CBI index, differentiating four categories: unburned, low, moderate, and high severity. We established a total of 126 field plots, where one year after fire the vegetation was evaluated and soil samples for the analysis of chemical, biochemical, and microbiological properties were collected. Sentinel-2 images were used to obtain vegetation biophysical variables. Vegetation and soil variables were directly applied as indicators, or used to calculate other indicators, which were standardized and selected to define ecosystem functions and services: (1) photosynthetic activity, soil fertility, nutrient cycling, and soil quality (supporting ecosystem service); (2) grass production for livestock and wood production (provisioning ecosystem service); (3) climate regulation and erosion protection (regulating ecosystem services), and (4) woody species diversity and aesthetic value (cultural ecosystem services). The combination of these functions and services defined ecosystem multifunctionality. The main results showed that burn severity negatively affected most ecosystem functions, as well as the ecosystem services of supporting, provisioning, and regulating, and hence, ecosystem multifunctionality. However, the soil fertility function significantly increased with high burn severity, while woody species diversity and aesthetic value functions and, consequently, the cultural ecosystem service, only decreased under the effect of moderate severity. These results provide a starting point to study burn severity effects from a multifunctional approach in Mediterranean ecosystems.


Asunto(s)
Quemaduras , Incendios , Incendios Forestales , Ecosistema , Humanos , Suelo/química
3.
Sci Total Environ ; 829: 154729, 2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35331756

RESUMEN

The large environmental and socioeconomic impacts of wildfires in Southern Europe require the development of efficient generalizable tools for fire danger analysis and proactive environmental management. With this premise, we aimed to study the influence of different environmental variables on burn severity, as well as to develop accurate and generalizable models to predict burn severity. To address these objectives, we selected 23 wildfires (131,490 ha) across Southern Europe. Using satellite imagery and geospatial data available at the planetary scale, we spatialized burn severity as well as 20 pre-burn environmental variables, which were grouped into climatic, topographic, fuel load-type, fuel load-moisture and fuel continuity predictors. We sampled all variables and divided the data into three independent datasets: a training dataset, used to perform univariant regression models, random forest (RF) models by groups of variables, and RF models including all predictors (full and parsimonious models); a second dataset to analyze interpolation capacity within the training wildfires; and a third dataset to study extrapolation capacity to independent wildfires. Results showed that all environmental variables determined burn severity, which increased towards the mildest climatic conditions, sloping terrain, high fuel loads, and coniferous vegetation. In general, the highest predictive and generalization capacities were found for fuel load proxies obtained though multispectral imagery, both in the individual analysis and by groups of variables. The full and parsimonious models outperformed all, the individual models, models by groups, and formerly developed predictive models of burn severity, as they were able to explain up to 95%, 59% and 25% of variance when applied to the training, interpolation and extrapolation datasets respectively. Our study is a benchmark for progress in the prediction of fire danger, provides operational tools for the identification of areas at risk, and sets the basis for the design of pre-burn management actions.


Asunto(s)
Quemaduras , Incendios , Incendios Forestales , Europa (Continente) , Humanos , Almacenamiento y Recuperación de la Información
4.
Microorganisms ; 8(4)2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32244714

RESUMEN

In the current context, there is a growing interest in reducing the use of chemical fertilizers and pesticides to promote ecological agriculture. The use of biochar and plant growth-promoting rhizobacteria (PGPR) is an environmentally friendly alternative that can improve soil conditions and increase ecosystem productivity. However, the effects of biochar and PGPR amendments on forest plantations are not well known. The aim of this study is to investigate the effects of biochar and PGPR applications on soil nutrients and bacterial community. To achieve this goal, we applied amendments of (i) biochar at 20 t hm-2, (ii) PGPR at 5 × 1010 CFU mL-1, and (iii) biochar at 20 t hm-2 + PGPR at 5 × 1010 CFU mL-1 in a eucalyptus seedling plantation in Guangxi, China. Three months after applying the amendments, we collected six soil samples from each treatment and from control plots. From each soil sample, we analyzed several physicochemical properties (pH, electrical conductivity, total N, inorganic N, NO3--N, NH4+-N, total P, total K, and soil water content), and we determined the bacterial community composition by sequencing the ribosomal 16S rRNA. Results indicated that co-application of biochar and PGPR amendments significantly decreased concentrations of soil total P and NH4+-N, whereas they increased NO3-N, total K, and soil water content. Biochar and PGPR treatments increased the richness and diversity of soil bacteria and the relative abundance of specific bacterial taxa such as Actinobacteria, Gemmatimonadetes, and Cyanobacteria. In general, the microbial composition was similar in the two treatments with PGPR. We also found that soil physicochemical properties had no significant influence on the soil composition of bacterial phyla, but soil NH4+-N was significantly related to the soil community composition of dominant bacterial genus. Thus, our findings suggest that biochar and PGPR amendments could be useful to maintain soil sustainability in eucalyptus plantations.

5.
Arch Microbiol ; 202(6): 1381-1396, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32179939

RESUMEN

Plant growth-promoting rhizobacteria (PGPR) are widely used to improve plant nutrient uptake and assimilation and soil physicochemical properties. We investigated the effects of bacterial (Bacillus megaterium strain DU07) fertilizer applications in a eucalyptus (clone DH32-29) plantation in Guangxi, China in February 2011. We used two types of organic matter, i.e., fermented tapioca residue ("FTR") and filtered sludge from a sugar factory ("FS"). The following treatments were evaluated: (1) no PGPR and no organic matter applied (control), (2) 3 × 109 CFU/g (colony forming unit per gram) PGPR plus FS (bacterial fertilizer 1, hereafter referred to as BF1), (3) 4 × 109 CFU/g plus FS (BF2), (4) 9 × 109 CFU/g plus FS (BF3), (5) 9 × 109 CFU/g broth plus FTR (BF4). Soil and plant samples were collected 3 months (M3) and 6 months (M6) after the seedlings were planted. In general, bacterial fertilizer amendments significantly increased plant foliar total nitrogen (TN) and soil catalase activity in the short term (month 3, M3); whereas, it significantly increased foliar TN, chlorophyll concentration (Chl-ab), proline; plant height, diameter, and volume of timber; and soil urease activity, STN, and available N (Avail N) concentrations in the long term (month 6, M6). Redundancy analysis showed that soil available phosphorus was significantly positively correlated with plant growth in M3, and soil Avail N was negatively correlated with plant growth in M6. In M3, soil catalase was more closely correlated with plant parameters than other enzyme activities and soil nutrients, and in M6, soil urease, polyphenol oxidase, and peroxidase were more closely correlated with plant parameters than other environmental factors and soil enzyme activities. PCA results showed that soil enzyme activities were significantly improved under all treatments relative to the control. Hence, photosynthesis, plant growth, and soil N retention were positively affected by bacterial fertilizer in M6, and bacterial fertilizer applications had positive and significant influence on soil enzyme activities during the trial period. Thus, bacterial fertilizer is attractive for use as an environmentally friendly fertilizer in Eucalyptus plantations following proper field evaluation.


Asunto(s)
Bacillus megaterium/metabolismo , Eucalyptus/crecimiento & desarrollo , Fertilizantes/microbiología , Plantones/crecimiento & desarrollo , Suelo/química , Catalasa/metabolismo , China , Clorofila/análisis , Fertilizantes/análisis , Manihot/microbiología , Nitrógeno/análisis , Nutrientes , Fósforo/análisis , Desarrollo de la Planta , Aguas del Alcantarillado/microbiología , Microbiología del Suelo , Ureasa/metabolismo
6.
Sci Total Environ ; 716: 137137, 2020 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-32059312

RESUMEN

Changes in climate and land use are altering fire regimes in many regions across the globe. This work aims to study the influence of wildfire recurrence and burn severity on woody community structure and plant functional traits under different environmental conditions. We selected three study sites along a Mediterranean-Oceanic climatic gradient, where we studied the fire history and burn severity of the last wildfire. Four years after the last wildfire, we established 1776 1-m2 plots where the percentage cover of each woody species was sampled. We calculated (i) structural parameters of the community such as total cover, alpha species richness, evenness and diversity (Shannon diversity index), and (ii) vegetation cover of each functional group (differentiating life forms, eco-physiological traits and regenerative traits). Focusing on community structure, results showed increases in species richness and diversity as wildfire recurrence increased, but this effect was partially counterweighted in the areas affected by high severity. In relation to functional groups, we found that increases in recurrence and severity fostered transition from tree- to shrub-dominated ecosystems. Non-arboreal life form, high specific leaf area, N2-fixing capacity, resprouting ability and heat-stimulated germination were advantageous traits under high recurrences and severities, and low seed mass was advantageous under high recurrence situations. We suggest that the strength of the effects of wildfire recurrence and burn severity on vegetation structure and traits might vary with climate, increasing from Oceanic to Mediterranean conditions. In the Mediterranean site, recurrence and severity were strongly related to traits associated with germination (seed mass and heat-stimulated germination), whereas in the Oceanic site the strongest relationships were found with a resprouting-related trait (bud location). This study identifies changes in vegetation structure and composition in scenarios of high recurrence and severity, and provides useful information on plant traits that could be key in enhancing vegetation resilience.


Asunto(s)
Incendios Forestales , Ecosistema , Plantas , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...