RESUMEN
Drought-related die-off events have been observed throughout Europe in Scots pine (Pinus sylvestris L.). Such events are exacerbated by carbon starvation that is, an imbalance of photosynthetic productivity and resource usage. Recent evidence suggests that optically measurable photosynthetic pigments such as chlorophylls and carotenoids respond to water stress (WS). However, there is a lack of measurements using imaging spectroscopy, and the mechanisms linking xanthophyll-related changes in reflectance captured by the photochemical reflectance index (PRI) and chlorophyll changes in red edge position (REP) to WS are not understood. To probe this, we conducted a greenhouse experiment where 3-year-old Pinus sylvestris saplings were subjected to water limitation and followed using hyperspectral imaging (HSI) spectroscopy, water status and photosynthetic measurements. Carotenoids (e.g., xanthophyll cycle) and chlorophylls responded to WS, which was observed using the HSI-derived indices PRI and REP respectively. The spatial-temporal response in these two pigment-reflectance groupings differed. The spatial distribution of PRI represented the light intensity around the time of the measurement, whereas REP reflected the daily averaged light intensity over the experimental course. A further difference was noted upon rewatering, where the carotenoid-related PRI partially recovered but the chlorophyll-related REP did not.
RESUMEN
The determination of physiological tolerance ranges of photosynthetic species and of the biochemical mechanisms underneath are fundamental to identify target processes and metabolites that will inspire enhanced plant management and production for the future. In this context, the terrestrial green algae within the genus Prasiola represent ideal models due to their success in harsh environments (polar tundras) and their extraordinary ecological plasticity. Here we focus on the outstanding Prasiola antarctica and compare two natural populations living in very contrasting microenvironments in Antarctica: the dry sandy substrate of a beach and the rocky bed of an ephemeral freshwater stream. Specifically, we assessed their photosynthetic performance at different temperatures, reporting for the first time gnsd values in algae and changes in thylakoid metabolites in response to extreme desiccation. Stream population showed lower α-tocopherol content and thicker cell walls and thus, lower gnsd and photosynthesis. Both populations had high temperatures for optimal photosynthesis (around +20°C) and strong constitutive tolerance to freezing and desiccation. This tolerance seems to be related to the high constitutive levels of xanthophylls and of the cylindrical lipids di- and tri-galactosyldiacylglycerol in thylakoids, very likely related to the effective protection and stability of membranes. Overall, P. antarctica shows a complex battery of constitutive and plastic protective mechanisms that enable it to thrive under harsh conditions and to acclimate to very contrasting microenvironments, respectively. Some of these anatomical and biochemical adaptations may partially limit photosynthesis, but this has a great potential to rise in a context of increasing temperature.
Asunto(s)
Fotosíntesis , Tilacoides , Tilacoides/metabolismo , Regiones Antárticas , Fotosíntesis/fisiología , Chlorophyceae/fisiología , Chlorophyceae/metabolismo , Xantófilas/metabolismo , Adaptación Fisiológica/fisiología , Desecación , AclimataciónRESUMEN
Terrestrialization by photosynthetic eukaryotes took place in the two branches of green microalgae: Chlorophyta and Charophyta. Within the latter, the paraphyletic streptophytic algae divide into two clades. These are named Klebsormidiophyceae-Chlorokybophyceae-Mesostigmatophyceae (KCM), which is the oldest, and Zygnematophyceae-Coleochaetophyceae-Charophyceae (ZCC), which contains the closest relatives of vascular plants. Terrestrialization required the emergence of adaptations in response to new challenges, such as irradiance, temperature oscillations and water deprivation. In this study, we evaluated lipid composition in species representative of distinct phylogenetic clusters within Charophyta and Chlorophyta. We aim to study whether the inherent thylakoid lipid composition, as well as its adaptability in response to desiccation, were fundamental factors for the evolutionary history of terrestrial plants. The results showed that the lipid composition was similar to that found in flowering land plants, differing only in betaine lipids. Likewise, the largest constitutive pool of oligogalactolipids (OGL) was found only in the fully desiccation-tolerant species Klebsormidium nitens. After desiccation, the content of polar lipids decreased in all species. Conversely, the content of OGL increased, particularly trigalactosyldiacylglycerol and tetragalactosyldiacylglycerol in the ZCC clade. The analysis of the molecular species composition of the newly formed OGL may suggest a different biosynthetic route for the KCM and ZCC clades. We speculate that the appearance of a new OGL synthesis pathway, which eventually arose during the streptophyte evolutionary process, endowed algae with a much more dynamic regulation of thylakoid composition in response to stress, which ultimately contributed to the colonization of terrestrial habitats.
Asunto(s)
Carofíceas , Chlorophyta , Streptophyta , Filogenia , Desecación , Plantas , Streptophyta/genética , Carofíceas/fisiología , Chlorophyta/metabolismo , LípidosRESUMEN
Resurrection plants are able to deal with complete dehydration of their leaves and then recover normal metabolic activity after rehydration. Only a few resurrection species are exposed to freezing temperatures in their natural environments, making them interesting models to study the key metabolic adjustments of freezing tolerances. Here, we investigate the effect of cold and freezing temperatures on physiological and biochemical changes in the leaves of Haberlea rhodopensis under natural and controlled environmental conditions. Our data shows that leaf water content affects its thermodynamical properties during vitrification under low temperatures. The changes in membrane lipid composition, accumulation of sugars, and synthesis of stress-induced proteins were significantly activated during the adaptation of H. rhodopensis to both cold and freezing temperatures. In particular, the freezing tolerance of H. rhodopensis relies on a sucrose/hexoses ratio in favor of hexoses during cold acclimation, while there is a shift in favor of sucrose upon exposure to freezing temperatures, especially evident when leaf desiccation is relevant. This pattern was paralleled by an elevated ratio of unsaturated/saturated fatty acids and significant quantitative and compositional changes in stress-induced proteins, namely dehydrins and early light-induced proteins (ELIPs). Taken together, our data indicate that common responses of H. rhodopensis plants to low temperature and desiccation involve the accumulation of sugars and upregulation of dehydrins/ELIP protein expression. Further studies on the molecular mechanisms underlying freezing tolerance (genes and genetic regulatory mechanisms) may help breeders to improve the resistance of crop plants.
Asunto(s)
Craterostigma , Lamiales , Magnoliopsida , Magnoliopsida/metabolismo , Desecación , Hojas de la Planta/metabolismo , Aclimatación , Sacarosa/metabolismo , Congelación , Deshidratación/metabolismoRESUMEN
The data available so far indicate that the photosynthetic and relative growth rates of bryophytes are 10% of those reported for tracheophytes. By examining the existing literature and reanalysing data published in over 100 studies, this review examines the ecophysiological, biochemical, and structural reasons behind this phenomenon. The limiting Rubisco content and surface for gas exchange are the internal factors that can explain the low photosynthetic and growth rates of bryophytes. The role of the thicker cell walls of bryophytes in limiting CO2 diffusion is unclear, due to the current uncertainties regarding their porosity and permeability to CO2. From this review, it is also evident that, despite bryophytes having low photosynthetic rates, their positive carbon balance is tightly related to their capacity to deal with extreme conditions. Contributing factors include their capacity to deal with large daily temperature oscillations, and their capacity to delay the cessation of photosynthesis under water deficit (or to tolerate desiccation in extreme situations). Although further studies on bryophytes are needed before more solid conclusions can be drawn, it seems that their success relies on their remarkable tolerance to a highly variable environment, possibly at the expense of their maximum photosynthetic rate.
Asunto(s)
Briófitas , Carbono , Briófitas/metabolismo , Dióxido de Carbono , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismoRESUMEN
Evergreen plants growing at high latitudes or high elevations may experience freezing events in their photosynthetic tissues. Freezing events can have physical and physiological effects on the leaves which alter leaf optical properties affecting remote and proximal sensing parameters. We froze leaves of six alpine plant species (Soldanella alpina, Ranunculus kuepferi, Luzula nutans, Gentiana acaulis, Geum montanum, and Centaurea uniflora) and three evergreen forest understorey species (Hepatica nobilis, Fragaria vesca and Oxalis acetosella), and assessed their spectral transmittance and optically measured pigments, as well as photochemical efficiency of photosystem II (PSII) as an indicator of freezing damage. Upon freezing, leaves of all the species transmitted more photosynthetically active radiation (PAR) and some species had increased ultraviolet-A (UV-A) transmittance. These differences were less pronounced in alpine than in understorey species, which may be related to higher chlorophyll degradation, visible as reduced leaf chlorophyll content upon freezing in the latter species. Among these understorey forbs, the thin leaves of O. acetosella displayed the largest reduction in chlorophyll (-79%). This study provides insights into how freezing changes the leaf optical properties of wild plants which could be used to set a baseline for upscaling optical reflectance data from remote sensing. Changes in leaf transmittance may also serve to indicate photosynthetic sufficiency and physiological tolerance of freezing events, but experimental research is required to establish this functional association.
Asunto(s)
Clorofila , Hojas de la Planta , Clorofila/metabolismo , Bosques , Congelación , Fotosíntesis , Hojas de la Planta/metabolismoRESUMEN
MAIN CONCLUSION: Plastoglobules are ubiquitous under non-stress conditions and their morphology, closely related to their composition, changes differently depending on the specific stress that the plant undergoes. Plastoglobules are lipoprotein structures attached to thylakoid membranes, which participate in chloroplast metabolism and stress responses. Their structure contains a coating lipid monolayer and a hydrophobic core that differ in composition. Their function in chloroplasts has been studied focussing on their composition. However, we currently lack a comprehensive study that quantitatively evaluates the occurrence and morphology of plastoglobules. Following a literature search strategy, we quantified the main morphological attributes of plastoglobules from photosynthetic chloroplasts of more than 1000 TEM images published over the last 53 years, covering more than 100 taxa and 15 stress types. The analysis shows that plastoglobules under non-stress conditions are spherical, with an average diameter of 100-200 nm and cover less than 3% of the chloroplast cross-section area. This percentage rises under almost every type of stress, particularly in senescence. Interestingly, an apparent trade-off between increasing either the number or the diameter of plastoglobules governs this response. Our results show that plastoglobules are ubiquitous in chloroplasts of higher plants under non-stress conditions. Besides, provided the specific molecular composition of the core and coat of plastoglobules, we conclude that specific stress-related variation in plastoglobules attributes may allow inferring precise responses of the chloroplast metabolism.
Asunto(s)
Cloroplastos , Tilacoides , Cloroplastos/metabolismo , Lípidos , Fotosíntesis , Tilacoides/metabolismoRESUMEN
For decades, the dynamic nature of chlorophyll a fluorescence (ChlaF) has provided insight into the biophysics and ecophysiology of the light reactions of photosynthesis from the subcellular to leaf scales. Recent advances in remote sensing methods enable detection of ChlaF induced by sunlight across a range of larger scales, from using instruments mounted on towers above plant canopies to Earth-orbiting satellites. This signal is referred to as solar-induced fluorescence (SIF) and its application promises to overcome spatial constraints on studies of photosynthesis, opening new research directions and opportunities in ecology, ecophysiology, biogeochemistry, agriculture and forestry. However, to unleash the full potential of SIF, intensive cross-disciplinary work is required to harmonize these new advances with the rich history of biophysical and ecophysiological studies of ChlaF, fostering the development of next-generation plant physiological and Earth-system models. Here, we introduce the scale-dependent link between SIF and photosynthesis, with an emphasis on seven remaining scientific challenges, and present a roadmap to facilitate future collaborative research towards new applications of SIF.
Asunto(s)
Clorofila A/fisiología , Ciencias de la Tierra , Fluorescencia , Biología Molecular , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Tecnología de Sensores Remotos/métodosRESUMEN
Desiccation tolerant plants can survive extreme water loss in their vegetative tissues. The fern Anemia caffrorum produces desiccation tolerant (DT) fronds in the dry season and desiccation sensitive (DS) fronds in the wet season, providing a unique opportunity to explore the physiological mechanisms associated with desiccation tolerance. Anemia caffrorum plants with either DT or DS fronds were acclimated in growth chambers. Photosynthesis, frond structure and anatomy, water relations and minimum conductance to water vapour were measured under well-watered conditions. Photosynthesis, hydraulics, frond pigments, antioxidants and abscisic acid contents were monitored under water deficit. A comparison between DT and DS fronds under well-watered conditions showed that the former presented higher leaf mass per area, minimum conductance, tissue elasticity and lower CO2 assimilation. Water deficit resulted in a similar induction of abscisic acid in both frond types, but DT fronds maintained higher stomatal conductance and upregulated more prominently lipophilic antioxidants. The seasonal alternation in production of DT and DS fronds in A. caffrorum represents a mechanism by which carbon gain can be maximized during the rainy season, and a greater investment in protective mechanisms occurs during the hot dry season, enabling the exploitation of episodic water availability.
Asunto(s)
Anemia , Helechos , Deshidratación , Desecación , Fotosíntesis , Hojas de la Planta , AguaRESUMEN
Current understanding of the effects of extreme temperature on alpine evergreens is very limited for ecosystems under Mediterranean climate (characterised by a drought period in summer), despite being exceptionally biodiverse systems and highly vulnerable under a global change scenario. We thus assessed (i) seasonal change and (ii) effect of ontogeny (young vs. mature leaves) on thermal sensitivity of Erysimum scoparium, a keystone evergreen of Teide mountain (Canary Islands). Mature leaves were comparatively much more vulnerable to moderately high leaf-temperature (≥+40 and <+50 °C) than other alpine species. Lowest LT50 occurred in autumn (-9.0 ± 1.6 °C as estimated with Rfd, and -12.9 ± 1.5 °C with Fv/Fm). Remarkably, young leaves showed stronger freezing tolerance than mature leaves in spring (LT50 -10.3 ± 2.1 °C vs. -5.6 ± 0.9 °C in mature leaves, as estimated with Rfd). Our data support the use of Rfd as a sensitive parameter to diagnose temperature-related damage in the leaves of mountain plants. On a global change scenario, E. scoparium appears as a well-prepared species for late-frost events, however rather vulnerable to moderately high temperatures.
RESUMEN
While most ferns avoid freezing as they have a tropical distribution or shed their fronds, wintergreen species in temperate and boreoalpine ecosystems have to deal with sub-zero temperatures. Increasing evidence has revealed overlapping mechanisms of desiccation and freezing tolerance in angiosperms, but the physiological mechanisms behind freezing tolerance in ferns are far from clear. We evaluated photochemical and hydraulic parameters in five wintergreen fern species differing in their ability to tolerate desiccation. We assessed frond freezing tolerance, ice nucleation temperature and propagation pattern, and xylem anatomical traits. Dynamics of photochemical performance and xanthophyll cycle were evaluated during freeze-thaw events under controlled conditions and, in selected species, in the field. Only desiccation-tolerant species, which possessed a greater fraction of narrow tracheids (<18 µm) than sensitive species, tolerated freezing. Frond freezing occurred in the field at -3.4 ± 0.9 °C (SD) irrespective of freezing tolerance, freezable water content, or tracheid properties. Even in complete darkness, maximal photochemical efficiency of photosystem II was down-regulated concomitantly with zeaxanthin accumulation in response to freezing. This was reversible upon re-warming only in tolerant species. Our results suggest that adaptation for freezing tolerance is associated with desiccation tolerance through complementary xylem properties (which may prevent risk of irreversible cavitation) and effective photoprotection mechanisms. The latter includes de-epoxidation of xanthophylls in darkness, a process evidenced for the first time directly in the field.
Asunto(s)
Helechos , Desecación , Ecosistema , Congelación , Xantófilas , XilemaRESUMEN
Snowmelt in alpine ecosystems brings ample water, and together with above-freezing temperatures, initiates plant growth. In this scenario, rapid activation of photosynthesis is essential for a successful life-history strategy. But, strong solar radiation in late spring enhances the risk of photodamage, particularly before photosynthesis is fully functional. We compared the photoprotective strategy of five alpine forbs: one geophyte not particularly specialised in subnival life (Crocus albiflorus) and four wintergreens differing in their degree of adaptation to subnival life, from least to most specialised: Gentiana acaulis, Geum montanum, Homogyne alpina and Soldanella alpina. We used distance to the edge of snow patches as a proxy to study time-dependent changes after melting. We postulated that the photoprotective response of snowbed specialists would be stronger than of more-generalist alpine meadow species. Fv /Fm was relatively low across wintergreens and even lower in the geophyte C. albiflorus. This species also had the largest xanthophyll-cycle pool and lowest tocopherol and flavonoid glycoside contents. After snow melting, all the species progressively activated ETR, but particularly the intermediate snowbed species G. acaulis and G. montanum. The photoprotective responses after snowmelt were idiosyncratic: G. montanum rapidly accumulated xanthophyll-cycle pigments, tocopherol and flavonoid glycosides; while S. alpina showed the largest increase in plastochromanol-8 and chlorophyll contents and the greatest changes in optical properties. Climate warming scenarios might shift the snowmelt date and consequently alter the effectiveness of photoprotection mechanisms, potentially changing the fitness outcome of the different strategies adopted by alpine forbs.
Asunto(s)
Ecosistema , Nieve , Clima , Desarrollo de la Planta , Estaciones del AñoRESUMEN
Xanthophyll cycles are broadly important in photoprotection, and the reversible de-epoxidation of xanthophylls typically occurs in excess light conditions. However, as presented in this review, compiling evidence in a wide range of photosynthetic eukaryotes shows that xanthophyll de-epoxidation also occurs under diverse abiotic stress conditions in darkness. Light-driven photochemistry usually leads to the pH changes that activate de-epoxidases (e.g. violaxanthin de-epoxidase), but in darkness alternative electron transport pathways and luminal domains enriched in monogalactosyl diacyl glycerol (which enhance de-epoxidase activity) likely enable de-epoxidation. Another 'dark side' to sustaining xanthophyll de-epoxidation is inactivation and/or degradation of epoxidases (e.g. zeaxanthin epoxidase). There are obvious benefits of such activity regarding stress tolerance, and indeed this phenomenon has only been reported in stressful conditions. However, more research is required to unravel the mechanisms and understand the physiological roles of dark-induced formation of zeaxanthin. Notably, the de-epoxidation of violaxanthin to antheraxanthin and zeaxanthin in darkness is still a frequently ignored process, perhaps because it questions a previous paradigm. With that in mind, this review seeks to shed some light on the dark side of xanthophyll de-epoxidation, and point out areas for future work.
Asunto(s)
Luteína , Xantófilas , Oscuridad , Estrés Fisiológico , ZeaxantinasRESUMEN
In Antarctica, multiple stresses (low temperatures, drought and excessive irradiance) hamper photosynthesis even in summer. We hypothesize that controlled inactivation of PSII reaction centres, a mechanism widely studied by pioneer work of Fred Chow and co-workers, may effectively guarantee functional photosynthesis under these conditions. Thus, we analysed the energy partitioning through photosystems in response to temperature in 15 bryophyte species presenting different worldwide distributions but all growing in Livingston Island, under controlled and field conditions. We additionally tested their tolerance to desiccation and freezing and compared those with their capability for sexual reproduction in Antarctica (as a proxy to overall fitness). Under field conditions, when irradiance rules air temperature by the warming of shoots (up to 20 °C under sunny days), a predominance of sustained photoinhibition beyond dynamic heat dissipation was observed at low temperatures. Antarctic endemic and polar species showed the largest increases of photoinhibition at low temperatures. On the contrary, the variation of thermal dissipation with temperature was not linked to species distribution. Instead, maximum non-photochemical quenching at 20 °C was related (strongly and positively) with desiccation tolerance, which also correlated with fertility in Antarctica, but not with freezing tolerance. Although all the analysed species tolerated - 20 °C when dry, the tolerance to freezing in hydrated state ranged from the exceptional ability of Schistidium rivulare (that survived for 14 months at - 80 °C) to the susceptibility of Bryum pseudotriquetrum (that died after 1 day at - 20 °C unless being desiccated before freezing).
Asunto(s)
Adaptación Fisiológica , Briófitas/fisiología , Frío/efectos adversos , Deshidratación , Congelación/efectos adversos , Fotosíntesis/fisiología , Luz Solar/efectos adversos , Regiones AntárticasRESUMEN
Lichens can withstand extreme desiccation to water contents of ≤ 0.1 g H2O g-1 DW, and in the desiccated state are among the most extremotolerant organisms known. Desiccation-tolerant life-forms such as seeds, mosses and lichens survive 'vitrification', that is the transition of their cytoplasm to a 'glassy' state, which causes metabolism to cease. However, our understanding of the mechanisms of desiccation tolerance is hindered by poor knowledge of what reactions occur in the desiccated state. Using Flavoparmelia caperata as a model lichen, we determined at what water contents vitrification occurred upon desiccation. Molecular mobility was assessed by dynamic mechanical thermal analysis, and the de- and re-epoxidation of the xanthophyll cycle pigments (measured by HPLC) was used as a proxy to assess enzyme activity. At 20 °C vitrification occurred between 0.12-0.08 g H2O g-1 DW and enzymes were active in a 'rubbery' state (0.17 g H2O g-1 DW) but not in a glassy state (0.03 g H2O g-1 DW). Therefore, desiccated tissues may appear to be 'dry' in the conventional sense, but subtle differences in water content will have substantial consequences on the types of (bio)chemical reactions that can occur, with downstream effects on longevity in the desiccated state.
Asunto(s)
Briófitas , Líquenes , Desecación , Parmeliaceae , AguaRESUMEN
Carotenoids (Cars) regulate the energy flow towards the reaction centres in a versatile way whereby the switch between energy harvesting and dissipation is strongly modulated by the operation of the xanthophyll cycles. However, the cascade of molecular mechanisms during the change from light harvesting to energy dissipation remains spectrally poorly understood. By characterizing the in vivo absorbance changes (ΔA) of leaves from four species in the 500-600 nm range through a Gaussian decomposition, while measuring passively simultaneous Chla fluorescence (F) changes, we present a direct observation of the quick antenna adjustments during a 3-min dark-to-high-light induction. Underlying spectral behaviours of the 500-600 nm ΔA feature can be characterized by a minimum set of three Gaussians distinguishing very quick dynamics during the first minute. Our results show the parallel trend of two Gaussian components and the prompt Chla F quenching. Further, we observe similar quick kinetics between the relative behaviour of these components and the in vivo formations of antheraxanthin (Ant) and zeaxanthin (Zea), in parallel with the dynamic quenching of singlet excited chlorophyll a (1Chla*) states. After these simultaneous quick kinetical behaviours of ΔA and F during the first minute, the 500-600 nm feature continues to increase, indicating a further enhanced absorption driven by the centrally located Gaussian until 3 min after sudden light exposure. Observing these precise underlying kinetic trends of the spectral behaviour in the 500-600 nm region shows the large potential of in vivo leaf spectroscopy to bring new insights on the quick redistribution and relaxation of excitation energy, indicating a key role for both Ant and Zea.
Asunto(s)
Clorofila A/química , Fluorescencia , Xantófilas/químicaRESUMEN
High-mountain-ecosystems in the Mediterranean-type climate are exceptional because of their outstanding biodiversity but also because of their characteristic drought stress in summer. Still, plant functioning in these habitats has been largely understudied. Here, morphological, photochemical, and biochemical traits were seasonally assessed in six shrubs characterized by contrasting morphological traits, in the Teide mountain in the Canary Islands. Two adjacent populations, the first located in an open site and the second in the understorey of Pinus canariensis treeline forest, were evaluated. We aimed at disentangling (1) the role of morphological and biochemical photoprotective strategies and of their seasonal plasticity to cope with changing environmental conditions in this semiarid ecosystem, (2) how the interspecific differences in biochemical photoprotection are related to leaf morphology and phenology and (3) how living in the understory of the treeline may affect those responses. Our results indicate that both morphological and biochemical traits (particularly leaf habit, morphology and carotenoids from the ß-branch) play an intricate role in photoprotection, and that a high interspecific variability exists. According to the down-regulation of photochemical activity and the upregulation of photoprotective molecules, species could be grouped into three types: (1) those more responsive to summer stress (e.g. Descurainia bourgeauana); (2) those more responsive to winter stress (e.g. Pterocephalus lasiospermus, Scrophularia glabrata and Adenocarpus viscosus); and (3) those showing rather constant behavior across seasons (e.g. Spartocytisus supranubius and Erysimum scoparium). In all the species, plants in the open site showed a marked seasonal physiological response in most of the studied parameters. Pinus canariensis canopy buffers environmental abiotic constrains. On a global change scenario, and provided further functional studies are needed, our results pinpoints heterogeneity in the sensitivity of these species against for instance late-frost or summer-heat/drought events, which could easily shift current species distribution in the coming years.
Asunto(s)
Sequías , Bosques , Pinus/crecimiento & desarrollo , Hojas de la Planta/anatomía & histología , Estaciones del Año , EspañaRESUMEN
Resurrection plants recover physiological functions after complete desiccation. Almost all of them are native to tropical warm environments. However, the Gesneriaceae include four genera, remnant of the past palaeotropical flora, which inhabit temperate mountains. One of these species is additionally freezing-tolerant: Ramonda myconi. We hypothesise that this species has been able to persist in a colder climate thanks to some resurrection-linked traits. To disentangle the physiological mechanisms underpinning multistress tolerance to desiccation and freezing, we conducted an exhaustive seasonal assessment of photosynthesis (gas exchange, limitations to partitioning, photochemistry and galactolipids) and primary metabolism (through metabolomics) in two natural populations at different elevations. R. myconi displayed low rates of photosynthesis, largely due to mesophyll limitation. However, plants were photosynthetically active throughout the year, excluding a reversible desiccation period. Common responses to desiccation and low temperature involved chloroplast protection: enhanced thermal energy dissipation, higher carotenoid to Chl ratio and de-epoxidation of the xanthophyll cycle. As specific responses, antioxidants and secondary metabolic routes rose upon desiccation, while putrescine, proline and a variety of sugars rose in winter. The data suggest conserved mechanisms to cope with photo-oxidation during desiccation and cold events, while additional metabolic mechanisms may have evolved as specific adaptations to cold during recent glaciations.
Asunto(s)
Craterostigma , Adaptación Fisiológica , Cloroplastos/metabolismo , Desecación , Fotosíntesis , PlantasRESUMEN
Members of the cosmopolitan streptophycean genus Klebsormidium live in various habitats, including sand dunes and polar/alpine environments. To survive in these harsh conditions they must possess an array of adaptive physiological and structural mechanisms, for example, to deal with chilling and photochilling stresses. Since these mechanisms have not been studied in detail, the objectives of this study were (i) to determine the physiological and biochemical responses of Klebsormidium cf. flaccidum (K. cf. flaccidum) to chilling (low temperature [LT]) and photochilling (LT in combination with high light [HL]) stresses; and (ii) to understand the cross-link between biochemical parameters and cellular ultrastructural changes. The results indicated that 5°C is a temperature threshold (i.e., at 5°C) but not at higher temperatures, physiological changes were observed (Fv /Fm and ETR decreased and energy-partitioning distribution changed, with an increase in Y[NPQ] under LT and an increase in Y[NO] under HL-LT). Also, pigment contents changed significantly, with increased concentrations of photoprotective pigments such as antheraxanthin, zeaxanthin, and total carotenes. All of these responses occurred under LT and, to a greater extent, under LT-HL, indicating that the two stresses (temperature and light) are additive. The cold treatment applied here induced the formation of spores under both LL and HL. The degree of photoinhibition was higher in spores than in vegetative cells, indicating that spores are less susceptible to photodamage. This study demonstrated a broad acclimation potential in different developmental stages of K. cf. flaccidum, which helps to explain the ecological success of this genus.
Asunto(s)
Streptophyta , Frío , Ecosistema , Fotosíntesis , TemperaturaRESUMEN
In this work, we review the physiological and molecular mechanisms that allow vascular plants to perform photosynthesis in extreme environments, such as deserts, polar and alpine ecosystems. Specifically, we discuss the morpho/anatomical, photochemical and metabolic adaptive processes that enable a positive carbon balance in photosynthetic tissues under extreme temperatures and/or severe water-limiting conditions in C3 species. Nevertheless, only a few studies have described the in situ functioning of photoprotection in plants from extreme environments, given the intrinsic difficulties of fieldwork in remote places. However, they cover a substantial geographical and functional range, which allowed us to describe some general trends. In general, photoprotection relies on the same mechanisms as those operating in the remaining plant species, ranging from enhanced morphological photoprotection to increased scavenging of oxidative products such as reactive oxygen species. Much less information is available about the main physiological and biochemical drivers of photosynthesis: stomatal conductance (gs ), mesophyll conductance (gm ) and carbon fixation, mostly driven by RuBisCO carboxylation. Extreme environments shape adaptations in structures, such as cell wall and membrane composition, the concentration and activation state of Calvin-Benson cycle enzymes, and RuBisCO evolution, optimizing kinetic traits to ensure functionality. Altogether, these species display a combination of rearrangements, from the whole-plant level to the molecular scale, to sustain a positive carbon balance in some of the most hostile environments on Earth.