RESUMEN
Wastes derived from the exploitation of stibnite ore deposits were studied to determine their mineralogical, chemical, and environmental characteristics and establish the Sb distribution and the current and long-term risks of Sb mobilization. Representative samples of mine waste rocks, mine tailings, and smelting waste were studied by X-ray powder diffraction, polarized light microscopy, electron microprobe analysis, and digestion, leaching, and extraction procedures. The main Sb-bearing minerals and phases identified in the smelting waste were natrojarosite, iron (oxyhydr)oxides, mixtures of iron and antimony (oxyhydr)oxides, and tripuhyite; those in the mine tailings and mine waste rocks were iron (oxyhydr)oxides and/or mixtures of iron and antimony (oxyhydr)oxides. Iron (oxyhydr)oxides and natrojarosite had high Sb contents, with maximum values of 16.51 and 9.63 wt% Sb2O5, respectively. All three types of waste were characterized as toxic; the mine waste rocks and mine tailings would require pretreatment to decrease their leachable Sb content before they would be acceptable at hazardous waste landfills. Relatively little of the Sb was in desorbable forms, which accounted for <0.01 and <0.8% of the total Sb content in the smelting waste and mine waste rocks/mine tailings, respectively. Under reducing conditions, further Sb mobilization from mine waste rocks and mine tailings could occur (up to 4.6 and 3.3% of the total content, respectively), considerably increasing the risk that Sb will be introduced into the surroundings. Although the smelting waste had the highest total Sb content, it showed the lowest risk of Sb release under different environmental conditions. The significant Fe levels in the smelting waste facilitated the formation of various Fe compounds that greatly decreased the Sb mobilization from these wastes.
Asunto(s)
Antimonio , Minerales , Antimonio/análisis , Residuos Peligrosos , Hierro , ÓxidosRESUMEN
Antimony is a toxic element whose concentration in soil and water has been rising due to anthropogenic activities. This study focuses on its accumulation in leaves of Dittrichia viscosa growing in soils of an abandoned Sb mine, and the effect on oxidant/antioxidant systems and photosynthetic efficiency. The results showed leaves to have a high Sb accumulation capacity. The amount of total chlorophyll decreased depending on Sb concentration and of carotenoids increased slightly, with a consequent increase in carotenoid/chlorophyll ratio. Photosynthetic efficiency was unaffected. The amount of O 2 .- rose, although there was no increase in cell membrane damage, with lipid peroxidation levels being similar to normal. This response may be due to considerable increases that were observed in total phenolics, PPO activity, and enzymatic antioxidant system. SOD, POX, and DHAR activities increased in response to increased Sb amounts in leaves. The ascorbate/glutathione cycle was also affected, with strong increases observed in all of its components, and consequent increases in total contents of the ascorbate and glutathione pools. However, the ratio between reduced and oxidized forms declined, reflecting an imbalance between the two, especially that between GSH and GSSG. Efficient detoxification of Sb may take place either through increases in phenolics, carotenoids, and components of the glutathione-ascorbate cycle or through the enzymatic antioxidant system. Since Dittrichia viscosa accumulates large amounts of Sb without suffering oxidative damage, it could be used for phytoremediation.