RESUMEN
INTRODUCTION: Rare variants in ABCA1 increase the risk of developing Alzheimer's disease (AD). ABCA1 facilitates the lipidation of apolipoprotein E (apoE). This study investigated whether microRNA-33 (miR-33)-mediated regulation of this ABCA1-APOE pathway affects phenotypes of an amyloid mouse model. METHODS: We generated mir-33+/+;APP/PS1 and mir-33-/-;APP/PS1 mice to determine changes in amyloid pathology using biochemical and histological analyses. We used RNA sequencing and mass spectrometry to identify the transcriptomic and proteomic changes between our genotypes. We also performed mechanistic experiments by determining the role of miR-33 in microglial migration and amyloid beta (Aß) phagocytosis. RESULTS: Mir-33 deletion increases ABCA1 levels and reduces Aß accumulation and glial activation. Multi-omics studies suggested miR-33 regulates the activation and migration of microglia. We confirm that the inhibition of miR-33 significantly increases microglial migration and Aß phagocytosis. DISCUSSION: These results suggest that miR-33 might be a potential drug target by modulating ABCA1 level, apoE lipidation, Aß level, and microglial function. HIGHLIGHTS: Loss of microRNA-33 (miR-33) increased ABCA1 protein levels and the lipidation of apolipoprotein E. Loss of miR-33 reduced amyloid beta (Aß) levels, plaque deposition, and gliosis. mRNAs and proteins dysregulated by miR-33 loss relate to microglia and Alzheimer's disease. Inhibition of miR-33 increased microglial migration and Aß phagocytosis in vitro.
RESUMEN
Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of mortality worldwide. Laminar shear stress from blood flow, sensed by vascular endothelial cells, protects from ASCVD by upregulating the transcription factors KLF2 and KLF4, which induces an anti-inflammatory program that promotes vascular resilience. Here we identify clustered γ-protocadherins as therapeutically targetable, potent KLF2 and KLF4 suppressors whose upregulation contributes to ASCVD. Mechanistic studies show that γ-protocadherin cleavage results in translocation of the conserved intracellular domain to the nucleus where it physically associates with and suppresses signaling by the Notch intracellular domain. γ-Protocadherins are elevated in human ASCVD endothelium; their genetic deletion or antibody blockade protects from ASCVD in mice without detectably compromising host defense against bacterial or viral infection. These results elucidate a fundamental mechanism of vascular inflammation and reveal a method to target the endothelium rather than the immune system as a protective strategy in ASCVD.
Asunto(s)
Aterosclerosis , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel , Aterosclerosis/metabolismo , Aterosclerosis/genética , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Animales , Humanos , Modelos Animales de Enfermedad , Transducción de Señal , Cadherinas/metabolismo , Cadherinas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Masculino , Receptores Notch/metabolismo , Receptores Notch/genética , Proteínas Relacionadas con las Cadherinas , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologíaRESUMEN
The complexity of the mechanisms underlying metabolic dysfunction-associated steatotic liver disease (MASLD) progression remains a significant challenge for the development of effective therapeutics. miRNAs have shown great promise as regulators of biological processes and as therapeutic targets for complex diseases. Here, we study the role of hepatic miR-33, an important regulator of lipid metabolism, during the progression of MASLD and the development of hepatocellular carcinoma (HCC). We report that miR-33 was elevated in the livers of humans and mice with MASLD and that its deletion in hepatocytes (miR-33 HKO) improved multiple aspects of the disease, including steatosis and inflammation, limiting the progression to metabolic dysfunction-associated steatotic hepatitis (MASH), fibrosis, and HCC. Mechanistically, hepatic miR-33 deletion reduced lipid synthesis and promoted mitochondrial fatty acid oxidation, reducing lipid burden. Additionally, absence of miR-33 altered the expression of several known miR-33 target genes involved in metabolism and resulted in improved mitochondrial function and reduced oxidative stress. The reduction in lipid accumulation and liver injury resulted in decreased YAP/TAZ pathway activation, which may be involved in the reduced HCC progression in HKO livers. Together, these results suggest suppressing hepatic miR-33 may be an effective therapeutic approach to temper the development of MASLD, MASH, and HCC in obesity.
Asunto(s)
Carcinoma Hepatocelular , Progresión de la Enfermedad , Hepatocitos , Neoplasias Hepáticas , MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Animales , Ratones , Hepatocitos/metabolismo , Hepatocitos/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Metabolismo de los Lípidos/genética , Masculino , Hígado Graso/genética , Hígado Graso/metabolismo , Hígado Graso/patología , Ratones Noqueados , Modelos Animales de Enfermedad , Hígado/metabolismo , Hígado/patologíaRESUMEN
Due to the rise in overnutrition, the incidence of obesity-induced hepatocellular carcinoma (HCC) will continue to escalate; however, our understanding of the obesity to HCC developmental axis is limited. We constructed a single-cell atlas to interrogate the dynamic transcriptomic changes during hepatocarcinogenesis in mice. Here we identify fatty acid binding protein 5 (FABP5) as a driver of obesity-induced HCC. Analysis of transformed cells reveals that FABP5 inhibition and silencing predispose cancer cells to lipid peroxidation and ferroptosis-induced cell death. Pharmacological inhibition and genetic ablation of FABP5 ameliorates the HCC burden in male mice, corresponding to enhanced ferroptosis in the tumour. Moreover, FABP5 inhibition induces a pro-inflammatory tumour microenvironment characterized by tumour-associated macrophages with increased expression of the co-stimulatory molecules CD80 and CD86 and increased CD8+ T cell activation. Our work unravels the dual functional role of FABP5 in diet-induced HCC, inducing the transformation of hepatocytes and an immunosuppressive phenotype of tumour-associated macrophages and illustrates FABP5 inhibition as a potential therapeutic approach.
Asunto(s)
Carcinoma Hepatocelular , Proteínas de Unión a Ácidos Grasos , Ferroptosis , Neoplasias Hepáticas , Proteínas de Neoplasias , Obesidad , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/etiología , Animales , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Ratones , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/etiología , Obesidad/complicaciones , Obesidad/metabolismo , Masculino , Microambiente Tumoral/inmunología , Humanos , Ratones Endogámicos C57BL , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunologíaRESUMEN
AgRP neurons drive hunger, and excessive nutrient intake is the primary driver of obesity and associated metabolic disorders. While many factors impacting central regulation of feeding behavior have been established, the role of microRNAs in this process is poorly understood. Utilizing unique mouse models, we demonstrate that miR-33 plays a critical role in the regulation of AgRP neurons, and that loss of miR-33 leads to increased feeding, obesity, and metabolic dysfunction in mice. These effects include the regulation of multiple miR-33 target genes involved in mitochondrial biogenesis and fatty acid metabolism. Our findings elucidate a key regulatory pathway regulated by a non-coding RNA that impacts hunger by controlling multiple bioenergetic processes associated with the activation of AgRP neurons, providing alternative therapeutic approaches to modulate feeding behavior and associated metabolic diseases.
Asunto(s)
Hambre , MicroARNs , Animales , Ratones , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Hambre/fisiología , Hipotálamo/metabolismo , MicroARNs/metabolismo , Neuronas/metabolismo , Obesidad/metabolismoRESUMEN
Midlobular hepatocytes are proposed to be the most plastic hepatic cell, providing a reservoir for hepatocyte proliferation during homeostasis and regeneration. However, other mechanisms beyond hyperplasia have been little explored and the contribution of other hepatocyte subpopulations to regeneration has been controversial. Thus, re-examining hepatocyte dynamics during regeneration is critical for cell therapy and treatment of liver diseases. Using a mouse model of hepatocyte- and non-hepatocyte- multicolor lineage tracing, we demonstrate that midlobular hepatocytes also undergo hypertrophy in response to chemical, physical, and viral insults. Our study shows that this subpopulation also combats liver impairment after infection with coronavirus. Furthermore, we demonstrate that pericentral hepatocytes also expand in number and size during the repair process and Galectin-9-CD44 pathway may be critical for driving these processes. Notably, we also identified that transdifferentiation and cell fusion during regeneration after severe injury contribute to recover hepatic function.
Asunto(s)
Hepatopatías , Regeneración Hepática , Animales , Regeneración Hepática/fisiología , Hígado/metabolismo , Hepatocitos/metabolismo , Hepatopatías/metabolismo , Modelos Animales de Enfermedad , Proliferación CelularRESUMEN
Desmosterol and cholesterol are essential lipid components of the sperm plasma membrane. Cholesterol efflux is required for capacitation, a process through which sperm acquire fertilizing ability. In this study, using a transgenic mouse model overexpressing 24-dehydrocholesterol reductase (DHCR24), an enzyme in the sterol biosynthesis pathway responsible for the conversion of desmosterol to cholesterol, we show that disruption of sterol homeostasis during spermatogenesis led to defective sperm morphology characterized by incomplete mitochondrial packing in the midpiece, reduced sperm count and motility, and a decline in male fertility with increasing paternal age, without changes in body fat composition. Sperm depleted of desmosterol exhibit inefficiency in the acrosome reaction, metabolic dysfunction, and an inability to fertilize the egg. These findings provide molecular insights into sterol homeostasis for sperm capacitation and its impact on male fertility.
RESUMEN
Blood vessels are continually exposed to circulating lipids, and elevation of ApoB-containing lipoproteins causes atherosclerosis. Lipoprotein metabolism is highly regulated by lipolysis, largely at the level of the capillary endothelium lining metabolically active tissues. How large blood vessels, the site of atherosclerotic vascular disease, regulate the flux of fatty acids (FAs) into triglyceride-rich (TG-rich) lipid droplets (LDs) is not known. In this study, we showed that deletion of the enzyme adipose TG lipase (ATGL) in the endothelium led to neutral lipid accumulation in vessels and impaired endothelial-dependent vascular tone and nitric oxide synthesis to promote endothelial dysfunction. Mechanistically, the loss of ATGL led to endoplasmic reticulum stress-induced inflammation in the endothelium. Consistent with this mechanism, deletion of endothelial ATGL markedly increased lesion size in a model of atherosclerosis. Together, these data demonstrate that the dynamics of FA flux through LD affects endothelial cell homeostasis and consequently large vessel function during normal physiology and in a chronic disease state.
Asunto(s)
Aterosclerosis , Lipasa , Ratones , Animales , Triglicéridos/metabolismo , Lipasa/genética , Lipasa/metabolismo , Lipólisis , Metabolismo de los Lípidos , Endotelio Vascular/metabolismo , Aterosclerosis/genética , Aterosclerosis/metabolismoRESUMEN
Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of mortality worldwide1. Laminar shear stress (LSS) from blood flow in straight regions of arteries protects against ASCVD by upregulating the Klf2/4 anti-inflammatory program in endothelial cells (ECs)2-8. Conversely, disturbed shear stress (DSS) at curves or branches predisposes these regions to plaque formation9,10. We previously reported a whole genome CRISPR knockout screen11 that identified novel inducers of Klf2/4. Here we report suppressors of Klf2/4 and characterize one candidate, protocadherin gamma A9 (Pcdhga9), a member of the clustered protocadherin gene family12. Pcdhg deletion increases Klf2/4 levels in vitro and in vivo and suppresses inflammatory activation of ECs. Pcdhg suppresses Klf2/4 by inhibiting the Notch pathway via physical interaction of cleaved Notch1 intracellular domain (NICD Val1744) with nuclear Pcdhg C-terminal constant domain (CCD). Pcdhg inhibition by EC knockout (KO) or blocking antibody protects from atherosclerosis. Pcdhg is elevated in the arteries of human atherosclerosis. This study identifies a novel fundamental mechanism of EC resilience and therapeutic target for treating inflammatory vascular disease.
RESUMEN
Angiopoietin-like 4 (ANGPTL4) is known to regulate various cellular and systemic functions. However, its cell-specific role in endothelial cells (ECs) function and metabolic homeostasis remains to be elucidated. Here, using endothelial-specific Angptl4 knock-out mice (Angptl4iΔEC), and transcriptomics and metabolic flux analysis, we demonstrate that ANGPTL4 is required for maintaining EC metabolic function vital for vascular permeability and angiogenesis. Knockdown of ANGPTL4 in ECs promotes lipase-mediated lipoprotein lipolysis, which results in increased fatty acid (FA) uptake and oxidation. This is also paralleled by a decrease in proper glucose utilization for angiogenic activation of ECs. Mice with endothelial-specific deletion of Angptl4 showed decreased pathological neovascularization with stable vessel structures characterized by increased pericyte coverage and reduced permeability. Together, our study denotes the role of endothelial-ANGPTL4 in regulating cellular metabolism and angiogenic functions of EC.
Asunto(s)
Angiogénesis , Células Endoteliales , Animales , Ratones , Proteína 4 Similar a la Angiopoyetina/genética , Proteína 4 Similar a la Angiopoyetina/metabolismo , Angiopoyetinas/metabolismo , Células Endoteliales/metabolismo , Ratones NoqueadosRESUMEN
Obesity-linked fatty liver is a significant risk factor for hepatocellular carcinoma (HCC)1,2; however, the molecular mechanisms underlying the transition from non-alcoholic fatty liver disease (NAFLD) to HCC remains unclear. The present study explores the role of the endoplasmic reticulum (ER)-associated protein NgBR, an essential component of the cis-prenyltransferases (cis-PTase) enzyme3, in chronic liver disease. Here we show that genetic depletion of NgBR in hepatocytes of mice (N-LKO) intensifies triacylglycerol (TAG) accumulation, inflammatory responses, ER/oxidative stress, and liver fibrosis, ultimately resulting in HCC development with 100% penetrance after four months on a high-fat diet. Comprehensive genomic and single cell transcriptomic atlas from affected livers provides a detailed molecular analysis of the transition from liver pathophysiology to HCC development. Importantly, pharmacological inhibition of diacylglycerol acyltransferase-2 (DGAT2), a key enzyme in hepatic TAG synthesis, abrogates diet-induced liver damage and HCC burden in N-LKO mice. Overall, our findings establish NgBR/cis-PTase as a critical suppressor of NAFLD-HCC conversion and suggests that DGAT2 inhibition may serve as a promising therapeutic approach to delay HCC formation in patients with advanced non-alcoholic steatohepatitis (NASH).
RESUMEN
Nonalcoholic steatohepatitis (NASH) is triggered by hepatocyte death through activation of caspase 6, as a result of decreased adenosine monophosphate (AMP)-activated protein kinase-alpha (AMPKα) activity. Increased hepatocellular death promotes inflammation which drives hepatic fibrosis. We show that the nuclear-localized mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP1) is upregulated in NASH patients and in NASH diet fed male mice. The focus of this work is to investigate whether and how MKP1 is involved in the development of NASH. Under NASH conditions increased oxidative stress, induces MKP1 expression leading to nuclear p38 MAPK dephosphorylation and decreases liver kinase B1 (LKB1) phosphorylation at a site required to promote LKB1 nuclear exit. Hepatic deletion of MKP1 in NASH diet fed male mice releases nuclear LKB1 into the cytoplasm to activate AMPKα and prevents hepatocellular death, inflammation and NASH. Hence, nuclear-localized MKP1-p38 MAPK-LKB1 signaling is required to suppress AMPKα which triggers hepatocyte death and the development of NASH.
Asunto(s)
Proteína Quinasa 14 Activada por Mitógenos , Enfermedad del Hígado Graso no Alcohólico , Animales , Masculino , Ratones , Proteínas Quinasas Activadas por AMP , Inflamación , Fosforilación , Proteínas Serina-Treonina QuinasasRESUMEN
Nonalcoholic steatohepatitis (NASH) is triggered by hepatocyte death through activation of caspase 6, as a result of decreased adenosine monophosphate (AMP)-activated protein kinase-alpha (AMPKα) activity. Increased hepatocellular death promotes inflammation which drives hepatic fibrosis. We show that the nuclear-localized mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP1) is upregulated in NASH patients and in NASH diet fed mice. The focus of this work was to investigate whether and how MKP1 is involved in the development of NASH. Under NASH conditions increased oxidative stress, induces MKP1 expression leading to nuclear p38 MAPK dephosphorylation and decreased liver kinase B1 (LKB1) phosphorylation at a site required to promote LKB1 nuclear exit. Hepatic deletion of MKP1 in NASH diet fed mice released nuclear LKB1 into the cytoplasm to activate AMPKα and prevent hepatocellular death, inflammation and NASH. Hence, nuclear-localized MKP1-p38 MAPK-LKB1 signaling is required to suppress AMPKα which triggers hepatocyte death and the development of NASH.
RESUMEN
Niemann-Pick disease type C (NP-C) is a genetic lysosomal disorder associated with progressive neurodegenerative phenotypes. Its therapeutic options are very limited. Here, we show that lithium treatment improves ataxia and feeding phenotypes, attenuates cerebellar inflammation and degeneration, and extends survival in Npc1 mouse models. In addition, lithium suppresses STING activation, SREBP2 processing to its mature form and the expression of the target genes in the Npc1 mice and in Npc1-deficient fibroblasts. Lithium impedes STING/SREBP2 transport from the ER to the Golgi, a step required for STING activation and SREBP2 processing, probably by lowering cytosolic calcium concentrations. This effect of lithium on STING/SREBP2 transport provides a mechanistic explanation for lithium's effects on Npc1 mice. Thus, this study reveals a potential therapeutic option for NP-C patients as well as a strategy to reduce active STING/SREBP2 pathway.
RESUMEN
Aging is the predominant risk factor for atherosclerosis, the leading cause of death. Rare smooth muscle cell (SMC) progenitors clonally expand giving rise to up to ~70% of atherosclerotic plaque cells; however, the effect of age on SMC clonality is not known. Our results indicate that aged bone marrow (BM)-derived cells non-cell autonomously induce SMC polyclonality and worsen atherosclerosis. Indeed, in myeloid cells from aged mice and humans, TET2 levels are reduced which epigenetically silences integrin ß3 resulting in increased tumor necrosis factor [TNF]-α signaling. TNFα signals through TNF receptor 1 on SMCs to promote proliferation and induces recruitment and expansion of multiple SMC progenitors into the atherosclerotic plaque. Notably, integrin ß3 overexpression in aged BM preserves dominance of the lineage of a single SMC progenitor and attenuates plaque burden. Our results demonstrate a molecular mechanism of aged macrophage-induced SMC polyclonality and atherogenesis and suggest novel therapeutic strategies.
Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Humanos , Ratones , Animales , Anciano , Placa Aterosclerótica/metabolismo , Médula Ósea/metabolismo , Integrina beta3/metabolismo , Aterosclerosis/genética , Miocitos del Músculo Liso , Músculo Liso/metabolismoRESUMEN
Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal disease. Recent findings have shown a marked metabolic reprogramming associated with changes in mitochondrial homeostasis and autophagy during pulmonary fibrosis. The microRNA-33 (miR-33) family of microRNAs (miRNAs) encoded within the introns of sterol regulatory element binding protein (SREBP) genes are master regulators of sterol and fatty acid (FA) metabolism. miR-33 controls macrophage immunometabolic response and enhances mitochondrial biogenesis, FA oxidation, and cholesterol efflux. Here, we show that miR-33 levels are increased in bronchoalveolar lavage (BAL) cells isolated from patients with IPF compared with healthy controls. We demonstrate that specific genetic ablation of miR-33 in macrophages protects against bleomycin-induced pulmonary fibrosis. The absence of miR-33 in macrophages improves mitochondrial homeostasis and increases autophagy while decreasing inflammatory response after bleomycin injury. Notably, pharmacological inhibition of miR-33 in macrophages via administration of anti-miR-33 peptide nucleic acids (PNA-33) attenuates fibrosis in different in vivo and ex vivo mice and human models of pulmonary fibrosis. These studies elucidate a major role of miR-33 in macrophages in the regulation of pulmonary fibrosis and uncover a potentially novel therapeutic approach to treat this disease.
Asunto(s)
Autofagia , Fibrosis Pulmonar Idiopática , Macrófagos , MicroARNs , Animales , Humanos , Ratones , Autofagia/genética , Bleomicina/efectos adversos , Homeostasis , Fibrosis Pulmonar Idiopática/metabolismo , Macrófagos/metabolismo , MicroARNs/genética , Mitocondrias/metabolismoRESUMEN
The complexity of the multiple mechanisms underlying non-alcoholic fatty liver disease (NAFLD) progression remains a significant challenge for the development of effective therapeutics. miRNAs have shown great promise as regulators of biological processes and as therapeutic targets for complex diseases. Here, we study the role of hepatic miR-33, an important regulator of lipid metabolism, during the progression of NAFLD. We report that miR-33 is overexpressed in hepatocytes isolated from mice with NAFLD and demonstrate that its specific suppression in hepatocytes (miR-33 HKO ) improves multiple aspects of the disease, including insulin resistance, steatosis, and inflammation and limits the progression to non-alcoholic steatohepatitis (NASH), fibrosis and hepatocellular carcinoma (HCC). Mechanistically, we find that hepatic miR-33 deficiency reduces lipid biosynthesis and promotes mitochondrial fatty acid oxidation to reduce lipid burden in hepatocytes. Additionally, miR-33 deficiency improves mitochondrial function, reducing oxidative stress. In miR-33 deficient hepatocytes, we found an increase in AMPKα activation, which regulates several pathways resulting in the attenuation of liver disease. The reduction in lipid accumulation and liver injury resulted in decreased transcriptional activity of the YAP/TAZ pathway, which may be involved in the reduced progression to HCC in the HKO livers. Together, these results suggest suppressing hepatic miR-33 may be an effective therapeutic approach at different stages of NAFLD/NASH/HCC disease progression.
RESUMEN
BACKGROUND: Cross-talk between sterol metabolism and inflammatory pathways has been demonstrated to significantly affect the development of atherosclerosis. Cholesterol biosynthetic intermediates and derivatives are increasingly recognized as key immune regulators of macrophages in response to innate immune activation and lipid overloading. 25-Hydroxycholesterol (25-HC) is produced as an oxidation product of cholesterol by the enzyme cholesterol 25-hydroxylase (CH25H) and belongs to a family of bioactive cholesterol derivatives produced by cells in response to fluctuating cholesterol levels and immune activation. Despite the major role of 25-HC as a mediator of innate and adaptive immune responses, its contribution during the progression of atherosclerosis remains unclear. METHODS: The levels of 25-HC were analyzed by liquid chromatography-mass spectrometry, and the expression of CH25H in different macrophage populations of human or mouse atherosclerotic plaques, respectively. The effect of CH25H on atherosclerosis progression was analyzed by bone marrow adoptive transfer of cells from wild-type or Ch25h-/- mice to lethally irradiated Ldlr-/- mice, followed by a Western diet feeding for 12 weeks. Lipidomic, transcriptomic analysis and effects on macrophage function and signaling were analyzed in vitro from lipid-loaded macrophage isolated from Ldlr-/- or Ch25h-/-;Ldlr-/- mice. The contribution of secreted 25-HC to fibrous cap formation was analyzed using a smooth muscle cell lineage-tracing mouse model, Myh11ERT2CREmT/mG;Ldlr-/-, adoptively transferred with wild-type or Ch25h-/- mice bone marrow followed by 12 weeks of Western diet feeding. RESULTS: We found that 25-HC accumulated in human coronary atherosclerotic lesions and that macrophage-derived 25-HC accelerated atherosclerosis progression, promoting plaque instability through autocrine and paracrine actions. 25-HC amplified the inflammatory response of lipid-loaded macrophages and inhibited the migration of smooth muscle cells within the plaque. 25-HC intensified inflammatory responses of lipid-laden macrophages by modifying the pool of accessible cholesterol in the plasma membrane, which altered Toll-like receptor 4 signaling, promoted nuclear factor-κB-mediated proinflammatory gene expression, and increased apoptosis susceptibility. These effects were independent of 25-HC-mediated modulation of liver X receptor or SREBP (sterol regulatory element-binding protein) transcriptional activity. CONCLUSIONS: Production of 25-HC by activated macrophages amplifies their inflammatory phenotype, thus promoting atherogenesis.
Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Humanos , Ratones , Animales , Aterosclerosis/patología , Hidroxicolesteroles/metabolismo , Placa Aterosclerótica/metabolismo , Macrófagos/metabolismo , Colesterol , Inflamación/metabolismo , Ratones NoqueadosRESUMEN
Low-density lipoprotein (LDL) accumulation in the arterial wall contributes to atherosclerosis initiation and progression1. Activin A receptor-like type 1 (ACVRL1, called activin-like kinase receptor (ALK1)) is a recently identified receptor that mediates LDL entry and transcytosis in endothelial cells (ECs)2,3. However, the role of this pathway in vivo is not yet known. In the present study, we show that genetic deletion of ALK1 in arterial ECs of mice substantially limits LDL accumulation, macrophage infiltration and atherosclerosis without affecting cholesterol or triglyceride levels. Moreover, a selective monoclonal antibody binding ALK1 efficiently blocked LDL transcytosis, but not bone morphogenetic protein-9 (BMP9) signaling, dramatically reducing plaque formation in LDL receptor knockout mice fed a high-fat diet. Thus, our results demonstrate that blocking LDL transcytosis into the endothelium may be a promising therapeutic strategy that targets the initiating event of atherosclerotic cardiovascular disease.
Asunto(s)
Receptores de Activinas Tipo II , Aterosclerosis , Células Endoteliales , Lipoproteínas LDL , Receptores de LDL , Transcitosis , Animales , Aterosclerosis/metabolismo , Aterosclerosis/genética , Aterosclerosis/patología , Transcitosis/efectos de los fármacos , Receptores de Activinas Tipo II/metabolismo , Receptores de Activinas Tipo II/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo , Lipoproteínas LDL/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Placa Aterosclerótica/tratamiento farmacológico , Placa Aterosclerótica/genética , Transducción de Señal , Masculino , Humanos , Factor 2 de Diferenciación de Crecimiento/metabolismo , Factor 2 de Diferenciación de Crecimiento/genética , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Células CultivadasRESUMEN
OBJECTIVE: miR-148a-3p (miR-148a) is a hepatic and immune-enriched microRNA (miRNA) that regulates macrophage-related lipoprotein metabolism, cholesterol homeostasis, and inflammation. The contribution of miR-148a-3p to the progression of atherosclerosis is unknown. In this study, we determined whether miR-148a silencing mitigated atherogenesis in APOBTGApobec-/-Ldlr+/- mice. METHODS: APOBTGApobec-/-Ldlr+/- mice were fed a typical Western-style diet for 22 weeks and injected with a nontargeting locked nucleic acid (LNA; LNA control) or miR-148a LNA (LNA 148a) for the last 10 weeks. At the end of the treatment, the mice were sacrificed, and circulating lipids, hepatic gene expression, and atherosclerotic lesions were analyzed. RESULTS: Examination of atherosclerotic lesions revealed a significant reduction in plaque size, with marked remodeling of the lesions toward a more stable phenotype. Mechanistically, miR-148a levels influenced macrophage cholesterol efflux and the inflammatory response. Suppression of miR-148a in murine primary macrophages decreased mRNA levels of proinflammatory M1-like markers (Nos2, Il6, Cox2, and Tnf) and increased the expression of anti-inflammatory genes (Arg1, Retlna, and Mrc1). CONCLUSIONS: Therapeutic silencing of miR148a mitigated the progression of atherosclerosis and promoted plaque stability. The antiatherogenic effect of miR-148a antisense therapy is likely mediated by the anti-inflammatory effects observed in macrophages treated with miR-148 LNA and independent of significant changes in circulating low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C).