Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38766262

RESUMEN

ATTR amyloidosis is a phenotypically heterogeneous disease characterized by the pathological deposition of transthyretin in the form of amyloid fibrils into various organs. ATTR amyloidosis may stem from mutations in variant (ATTRv) amyloidosis, or aging in wild-type (ATTRwt) amyloidosis. ATTRwt generally manifests as a cardiomyopathy phenotype, whereas ATTRv may present as polyneuropathy, cardiomyopathy, or mixed, in combination with many other symptoms deriving from secondary organ involvement. Over 130 different mutational variants of transthyretin have been identified, many of them being linked to specific disease symptoms. Yet, the role of these mutations in the differential disease manifestation remains elusive. Using cryo-electron microscopy, here we structurally characterized fibrils from the heart of an ATTRv patient carrying the V122Δ mutation, predominantly associated with polyneuropathy. Our results show that these fibrils are polymorphic, presenting as both single and double filaments. Our study alludes to a structural connection contributing to phenotypic variation in ATTR amyloidosis, as polymorphism in ATTR fibrils may manifest in patients with predominantly polyneuropathic phenotypes.

2.
bioRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798361

RESUMEN

ATTR amyloidosis is a systemic disease characterized by the deposition of amyloid fibrils made of transthyretin, a protein integral to transporting retinol and thyroid hormones. Transthyretin is primarily produced by the liver and circulates in blood as a tetramer. The retinal epithelium also secretes transthyretin, which is secreted to the vitreous humor of the eye. Because of mutations or aging, transthyretin can dissociate into amyloidogenic monomers triggering amyloid fibril formation. The deposition of transthyretin amyloid fibrils in the myocardium and peripheral nerves causes cardiomyopathies and neuropathies, respectively. Using cryo-electron microscopy, here we determined the structures of amyloid fibrils extracted from cardiac and nerve tissues of an ATTRv-V30M patient. We found that fibrils from both tissues share a consistent structural conformation, similar to the previously described structure of cardiac fibrils from an individual with the same genotype, but different from the fibril structure obtained from the vitreous humor. Our study hints to a uniform fibrillar architecture across different tissues within the same individual, only when the source of transthyretin is the liver. Moreover, this study provides the first description of ATTR fibrils from the nerves of a patient and enhances our understanding of the role of deposition site and protein production site in shaping the fibril structure in ATTRv-V30M amyloidosis.

3.
bioRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798519

RESUMEN

ATTR amyloidosis is a degenerative disorder characterized by the systemic deposition of the protein transthyretin. These amyloid aggregates of transthyretin (ATTR) can deposit in different parts of the body causing diverse clinical manifestations. Our laboratory aims to investigate a potential relationship between the different genotypes, organ of deposition, clinical phenotypes, and the structure of ATTR fibrils. Using cryo-electron microscopy, we have recently described how the neuropathic related mutations ATTRv-I84S and ATTRv-V122Δ can drive structural polymorphism in ex vivo fibrils. Here we question whether the mutation ATTRv-T60A, that commonly triggers cardiac and neuropathic symptoms, has a similar effect. To address this question, we extracted and determined the structure of ATTR-T60A fibrils from multiple organs (heart, thyroid, kidney, and liver) from the same patient and from the heart of two additional patients. We have found a consistent conformation among all the fibril structures, acquiring the "closed-gate morphology" previously found in ATTRwt and others ATTRv related to cardiac or mixed manifestations. The closed-gate morphology is composed by two segments of the protein that interact together forming a polar channel, where the residues glycine 57 to isoleucine 68 act as a gate of the polar cavity. Our study indicates that ATTR-T60A fibrils present in peripheral organs adopt the same structural conformation in all patients, regardless of the organ of deposition.

4.
Nat Commun ; 15(1): 581, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233397

RESUMEN

ATTR amyloidosis is caused by the deposition of transthyretin in the form of amyloid fibrils in virtually every organ of the body, including the heart. This systemic deposition leads to a phenotypic variability that has not been molecularly explained yet. In brain amyloid conditions, previous studies suggest an association between clinical phenotype and the molecular structures of their amyloid fibrils. Here we investigate whether there is such an association in ATTRv amyloidosis patients carrying the mutation I84S. Using cryo-electron microscopy, we determined the structures of cardiac fibrils extracted from three ATTR amyloidosis patients carrying the ATTRv-I84S mutation, associated with a consistent clinical phenotype. We found that in each ATTRv-I84S patient, the cardiac fibrils exhibited different local conformations, and these variations can co-exist within the same fibril. Our finding suggests that one amyloid disease may associate with multiple fibril structures in systemic amyloidoses, calling for further studies.


Asunto(s)
Neuropatías Amiloides Familiares , Encefalopatías , Humanos , Amiloide/química , Neuropatías Amiloides Familiares/genética , Microscopía por Crioelectrón , Prealbúmina/genética , Prealbúmina/química , Corazón
5.
Curr Opin Struct Biol ; 83: 102700, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37717490

RESUMEN

Amyloidoses are fatal conditions associated with the aggregation of proteins into amyloid fibrils that deposit systemically and/or locally. Possibly because the causal mechanism of protein aggregation and deposition is not fully understood, this group of diseases remains uncurable. Advances in structural biology, such as the use of nuclear magnetic resonance and cryo-electron microscopy, have enabled the study of the structures and the conformational nature of the proteins whose aggregation is associated with the underlying pathogenesis of amyloidosis. As a result, the last years of research have translated into the development of directed therapeutic strategies that target the specific conformations of precursors, fibrils, and intermediary species. Current efforts include the use of small molecules, peptides, and antibodies. This review summarizes the recent progress in developing strategies that target specific protein conformations for the treatment of amyloidoses.


Asunto(s)
Amiloidosis , Agregado de Proteínas , Humanos , Microscopía por Crioelectrón , Amiloidosis/metabolismo , Amiloidosis/patología , Amiloide/química , Conformación Proteica
6.
Angew Chem Int Ed Engl ; 62(19): e202209252, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36542681

RESUMEN

Understanding early amyloidogenesis is key to rationally develop therapeutic strategies. Tau protein forms well-characterized pathological deposits but its aggregation mechanism is still poorly understood. Using single-molecule force spectroscopy based on a mechanical protection strategy, we studied the conformational landscape of the monomeric tau repeat domain (tau-RD244-368 ). We found two sets of conformational states, whose frequency is influenced by mutations and the chemical context. While pathological mutations Δ280K and P301L and a pro-amyloidogenic milieu favored expanded conformations and destabilized local structures, an anti-amyloidogenic environment promoted a compact ensemble, including a conformer whose topology might mask two amyloidogenic segments. Our results reveal that to initiate aggregation, monomeric tau-RD244-368 decreases its polymorphism adopting expanded conformations. This could account for the distinct structures found in vitro and across tauopathies.


Asunto(s)
Tauopatías , Proteínas tau , Humanos , Proteínas tau/metabolismo , Tauopatías/genética , Tauopatías/metabolismo , Tauopatías/patología , Conformación Molecular , Mutación
7.
Arch Biochem Biophys ; 675: 108113, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31568752

RESUMEN

Transactive Response DNA-Binding Protein of 43 kDa (TDP-43) is an essential human protein implicated in Amyotrophic Lateral Sclerosis (ALS) and common dementias. Its C-terminal disordered region, composed of residues 264-414 includes a hydrophobic segment (residues 320-340), which drives physiological liquid/liquid phase separation and a Q/N-rich segment (residues 341-357), which is essential for pathological amyloid formation. Due to TDP-43's relevance for pathology, identifying inhibitors and characterizing their mechanism of action are important pharmacological goals. The Polyglutamine Binding Peptide 1 (QBP1), whose minimal active core is the octapeptide WGWWPGIF, strongly inhibits the aggregation of polyQ-containing amyloidogenic proteins such as Huntingtin. Rather promiscuous, this inhibitor also blocks the aggregation of other glutamine containing amyloidogenic proteins, but not Aß, and its mechanism of action remains unknown. Using a series of spectroscopic assays and biochemical tests, we establish that QBP1 binds and inhibits amyloid formation by TDP-43's Q/N-rich region. NMR spectroscopic data evince that the aromatic rings of QBP1 accept hydrogen bonds from the HN groups of the Asn and Gln to block amyloidogenesis. This mechanism of blockage may be general to polyphenol amyloid inhibitors.


Asunto(s)
Amiloide/biosíntesis , Proteínas de Unión al ADN/antagonistas & inhibidores , Oligopéptidos/fisiología , Secuencia de Aminoácidos , Proteínas de Unión al ADN/metabolismo , Fluorescencia , Humanos , Oligopéptidos/química
8.
Nanoscale ; 10(35): 16857-16867, 2018 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-30168565

RESUMEN

Intrinsically disordered proteins (IDPs) lack a tertiary structure. Amyloidogenic IDPs (aIDPs) in particular have attracted great interest due to their implication in several devastating diseases as well as in critical biological functions. However, the conformational changes that trigger amyloid formation in aIDPs are largely unknown. aIDPs' conformational polymorphism at the monomer level encumbers their study using bulk techniques. Single-molecule techniques like atomic force microscopy-based single-molecule force spectroscopy represent a promising approach and a "carrier-guest" strategy, in which the protein of interest is mechanically protected, was developed to overcome the spurious signals from the noisy proximal region. However, since the carrier and single-molecule markers have similar mechanostabilities, their signals can intermingle in the force-extension recordings, making peak selection and analysis very laborious, cumbersome and prone to error for the non-expert. Here we have developed a new carrier, the c8C module from the CipC scaffoldin, with a higher mechanostability so that the signals from the protected protein will appear at the end of the recordings. This assures an accurate, more efficient and expert-independent analysis, simplifying both the selection and analysis of the single-molecule data. Furthermore, this modular design can be integrated into any SMFS polyprotein-based vector, thus constituting a useful utensil in the growing toolbox of protein nanomechanics.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Conformación Proteica , Proteínas Bacterianas/química , Proteínas Portadoras/química , Dicroismo Circular , Microscopía de Fuerza Atómica , Simulación de Dinámica Molecular , Nanotecnología , Resonancia Magnética Nuclear Biomolecular
9.
PLoS Biol ; 14(1): e1002361, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26812143

RESUMEN

Amyloids are ordered protein aggregates that are typically associated with neurodegenerative diseases and cognitive impairment. By contrast, the amyloid-like state of the neuronal RNA binding protein Orb2 in Drosophila was recently implicated in memory consolidation, but it remains unclear what features of this functional amyloid-like protein give rise to such diametrically opposed behaviour. Here, using an array of biophysical, cell biological and behavioural assays we have characterized the structural features of Orb2 from the monomer to the amyloid state. Surprisingly, we find that Orb2 shares many structural traits with pathological amyloids, including the intermediate toxic oligomeric species, which can be sequestered in vivo in hetero-oligomers by pathological amyloids. However, unlike pathological amyloids, Orb2 rapidly forms amyloids and its toxic intermediates are extremely transient, indicating that kinetic parameters differentiate this functional amyloid from pathological amyloids. We also observed that a well-known anti-amyloidogenic peptide interferes with long-term memory in Drosophila. These results provide structural insights into how the amyloid-like state of the Orb2 protein can stabilize memory and be nontoxic. They also provide insight into how amyloid-based diseases may affect memory processes.


Asunto(s)
Proteínas Amiloidogénicas/metabolismo , Proteínas de Drosophila/metabolismo , Consolidación de la Memoria , Factores de Transcripción/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Animales , Células COS , Chlorocebus aethiops , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Masculino , Mutación , Oligopéptidos , Estructura Terciaria de Proteína , Factores de Transcripción/química , Factores de Transcripción/genética , Levaduras , Factores de Escisión y Poliadenilación de ARNm/química , Factores de Escisión y Poliadenilación de ARNm/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA