Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(9): 114750, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39283743

RESUMEN

Mir483 is a conserved and highly expressed microRNA in placental mammals, embedded within the Igf2 gene. Its expression is dysregulated in a number of human diseases, including metabolic disorders and certain cancers. Here, we investigate the developmental regulation and function of Mir483 in vivo. We find that Mir483 expression is dependent on Igf2 transcription and the regulation of the Igf2/H19 imprinting control region. Transgenic Mir483 overexpression in utero causes fetal, but not placental, growth restriction through insulin-like growth factor 1 (IGF1) and IGF2 and also causes cardiovascular defects leading to fetal death. Overexpression of Mir483 post-natally results in growth stunting through IGF1 repression, increased hepatic lipid production, and excessive adiposity. IGF1 infusion rescues the post-natal growth restriction. Our findings provide insights into the function of Mir483 as a growth suppressor and metabolic regulator and suggest that it evolved within the INS-IGF2-H19 transcriptional region to limit excessive tissue growth through repression of IGF signaling.


Asunto(s)
Factor II del Crecimiento Similar a la Insulina , Factor I del Crecimiento Similar a la Insulina , MicroARNs , Animales , MicroARNs/metabolismo , MicroARNs/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , Factor II del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Ratones , Femenino , Embarazo , Regulación del Desarrollo de la Expresión Génica , Ratones Transgénicos , Humanos , Impresión Genómica , Retardo del Crecimiento Fetal/metabolismo , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/patología , Ratones Endogámicos C57BL , ARN Largo no Codificante
2.
Mol Omics ; 20(9): 570-583, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39246063

RESUMEN

Lipid metabolism is recognised as being central to growth, disease and health. Lipids, therefore, have an important place in current research on globally significant topics such as food security and biodiversity loss. However, answering questions in these important fields of research requires not only identification and measurement of lipids in a wider variety of sample types than ever before, but also hypothesis-driven analysis of the resulting 'big data'. We present a novel pipeline that can collect data from a wide range of biological sample types, taking 1 000 000 lipid measurements per 384 well plate, and analyse the data systemically. We provide evidence of the power of the tool through proof-of-principle studies using edible fish (mackerel, bream, seabass) and colonies of Bombus terrestris. Bee colonies were found to be more like mini-ecosystems and there was evidence for considerable changes in lipid metabolism in bees through key developmental stages. This is the first report of either high throughput LCMS lipidomics or systemic analysis in individuals, colonies and ecosystems. This novel approach provides new opportunities to analyse metabolic systems at different scales at a level of detail not previously feasible, to answer research questions about societally important topics.


Asunto(s)
Metabolismo de los Lípidos , Lipidómica , Animales , Abejas/metabolismo , Lipidómica/métodos , Lípidos/análisis , Peces/metabolismo , Ecosistema
3.
PLoS Biol ; 22(6): e3002641, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38833481

RESUMEN

In utero exposure to maternal obesity programs increased obesity risk. Animal models show that programmed offspring obesity is preceded by hyperphagia, but the mechanisms that mediate these changes are unknown. Using a mouse model of maternal obesity, we observed increased intake of a high-fat diet (HFD) in offspring of obese mothers that precedes the development of obesity. Through small RNA sequencing, we identified programmed overexpression of hypothalamic miR-505-5p that is established in the fetus, lasts to adulthood and is maintained in hypothalamic neural progenitor cells cultured in vitro. Metabolic hormones and long-chain fatty acids associated with obesity increase miR-505-5p expression in hypothalamic neurons in vitro. We demonstrate that targets of miR-505-5p are enriched in fatty acid metabolism pathways and overexpression of miR-505-5p decreased neuronal fatty acid metabolism in vitro. miR-505-5p targets are associated with increased BMI in human genetic studies. Intra-cerebroventricular injection of miR-505-5p in wild-type mice increased HFD intake, mimicking the phenotype observed in offspring exposed to maternal obesity. Conversely, maternal exercise intervention in an obese mouse pregnancy rescued the programmed increase of hypothalamic miR-505-5p in offspring of obese dams and reduced HFD intake to control offspring levels. This study identifies a novel mechanism by which maternal obesity programs obesity in offspring via increased intake of high-fat foods.


Asunto(s)
Dieta Alta en Grasa , Ácidos Grasos , Hipotálamo , MicroARNs , Obesidad Materna , Animales , Femenino , Humanos , Masculino , Ratones , Embarazo , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos/metabolismo , Hipotálamo/metabolismo , Ratones Endogámicos C57BL , MicroARNs/metabolismo , MicroARNs/genética , Neuronas/metabolismo , Obesidad/metabolismo , Obesidad/genética , Obesidad Materna/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/genética
4.
Mol Metab ; 80: 101875, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38218535

RESUMEN

OBJECTIVE: We investigated the potential involvement of miRNAs in the developmental programming of cardiovascular diseases (CVD) by maternal obesity. METHODS: Serum miRNAs were measured in individuals from the Helsinki Birth Cohort (with known maternal body mass index), and a mouse model was used to determine causative effects of maternal obesity during pregnancy and ischemia-reperfusion on offspring cardiac miRNA expression and release. RESULTS: miR-15b-5p levels were increased in the sera of males born to mothers with higher BMI and in the hearts of adult mice born to obese dams. In an ex-vivo model of perfused mouse hearts, we demonstrated that cardiac tissue releases miR-15b-5p, and that some of the released miR-15b-5p was contained within small extracellular vesicles (EVs). We also demonstrated that release was higher from hearts exposed to maternal obesity following ischaemia/reperfusion. Over-expression of miR-15b-5p in vitro led to loss of outer mitochondrial membrane stability and to repressed fatty acid oxidation in cardiomyocytes. CONCLUSIONS: These findings suggest that miR-15-b could play a mechanistic role in the dysregulation of cardiac metabolism following exposure to an in utero obesogenic environment and that its release in cardiac EVs following ischaemic damage may be a novel factor contributing to inter-organ communication between the programmed heart and peripheral tissues.


Asunto(s)
Enfermedades Cardiovasculares , Vesículas Extracelulares , MicroARNs , Obesidad Materna , Daño por Reperfusión , Adulto , Animales , Femenino , Humanos , Masculino , Ratones , Embarazo , Enfermedades Cardiovasculares/metabolismo , Vesículas Extracelulares/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Obesidad Materna/metabolismo , Daño por Reperfusión/metabolismo
6.
Diabetologia ; 65(12): 2132-2145, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36112170

RESUMEN

AIMS/HYPOTHESIS: Metformin is increasingly used to treat gestational diabetes (GDM) and pregnancies complicated by pregestational type 2 diabetes or polycystic ovary syndrome but data regarding long-term offspring outcome are lacking in both human studies and animal models. Using a mouse model, this study investigated the effects of maternal metformin intervention during obese glucose-intolerant pregnancy on adiposity, hepatic steatosis and markers of metabolic health of male and female offspring up to the age of 12 months. METHODS: C57BL/6J female mice were weaned onto either a control diet (Con) or, to induce pre-conception obesity, an obesogenic diet (Ob). The respective diets were maintained throughout pregnancy and lactation. These obese dams were then randomised to the untreated group or to receive 300 mg/kg oral metformin hydrochloride treatment (Ob-Met) daily during pregnancy. In male and female offspring, body weights and body composition were measured from 1 month until 12 months of age, when serum and tissues were collected for investigation of adipocyte cellularity (histology), adipose tissue inflammation (histology and quantitative RT-PCR), and hepatic steatosis and fibrosis (histochemistry and modified Folch assay). RESULTS: At 12 months of age, male Ob and Ob-Met offspring showed increased adiposity, adipocyte hypertrophy, elevated expression of proinflammatory genes, hyperleptinaemia and hepatic lipid accumulation compared with Con offspring. Male Ob-Met offspring failed to show hyperplasia between 8 weeks and 12 months, indicative of restricted adipose tissue expansion, resulting in increased immune cell infiltration and ectopic lipid deposition. Female Ob offspring were relatively protected from these phenotypes but Ob-Met female offspring showed increased adiposity, adipose tissue inflammation, hepatic lipid accumulation, hyperleptinaemia and hyperinsulinaemia compared with Con female offspring. CONCLUSIONS/INTERPRETATION: Maternal metformin treatment of obese dams increased offspring metabolic risk factors in a sex- and age-dependent manner. These observations highlight the importance of following up offspring of both sexes beyond early adulthood after interventions during pregnancy. Our findings illustrate the complexity of balancing short-term benefits to mother and child vs any potential long-term metabolic effects on the offspring when prescribing therapeutic agents that cross the placenta.


Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Hígado Graso , Metformina , Efectos Tardíos de la Exposición Prenatal , Humanos , Embarazo , Animales , Ratones , Niño , Masculino , Femenino , Adulto , Lactante , Metformina/farmacología , Metformina/uso terapéutico , Glucosa , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Composición Corporal , Hígado Graso/patología , Inflamación , Lípidos , Efectos Tardíos de la Exposición Prenatal/metabolismo , Dieta Alta en Grasa/efectos adversos
7.
Nat Metab ; 4(5): 507-523, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35637347

RESUMEN

Strong evidence suggests that early-life exposures to suboptimal environmental factors, including those in utero, influence our long-term metabolic health. This has been termed developmental programming. Mounting evidence suggests that the growth and metabolism of male and female fetuses differ. Therefore, sexual dimorphism in response to pre-conception or early-life exposures could contribute to known sex differences in susceptibility to poor metabolic health in adulthood. However, until recently, many studies, especially those in animal models, focused on a single sex, or, often in the case of studies performed during intrauterine development, did not report the sex of the animal at all. In this review, we (a) summarize the evidence that male and females respond differently to a suboptimal pre-conceptional or in utero environment, (b) explore the potential biological mechanisms that underlie these differences and (c) review the consequences of these differences for long-term metabolic health, including that of subsequent generations.


Asunto(s)
Caracteres Sexuales , Animales , Femenino , Masculino , Fenotipo
8.
J Endocrinol ; 253(2): R47-R63, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35258482

RESUMEN

Obesity and gestational diabetes during pregnancy have multiple short- and long-term consequences for both mother and child. One common feature of pregnancies complicated by maternal obesity and gestational diabetes is maternal hyperinsulinaemia, which has effects on the mother and her adaptation to pregnancy. Even though insulin does not cross the placenta insulin can act on the placenta as well affecting placental growth, angiogenesis and lipid metabolism. Obese and gestational diabetic pregnancies are often characterised by maternal hyperglycaemia resulting in exposure of the fetus to high levels of glucose, which freely crosses the placenta. This leads to stimulation of fetal ß-cells and insulin secretion in the fetus. Fetal hyperglycaemia/hyperinsulinaemia has been shown to cause multiple complications in fetal development, such as altered growth trajectories, impaired neuronal and cardiac development and early exhaustion of the pancreas. These changes could increase the susceptibility of the offspring to develop cardiometabolic diseases later in life. In this review, we aim to summarize and review the mechanisms by which maternal and fetal hyperinsulinaemia impact on (i) maternal health during pregnancy; (ii) placental and fetal development; (iii) offspring energy homeostasis and long-term cardiometabolic health; (iv) how interventions can alleviate these effects.


Asunto(s)
Enfermedades Cardiovasculares , Hiperinsulinismo , Enfermedades Cardiovasculares/metabolismo , Femenino , Desarrollo Fetal/fisiología , Feto/metabolismo , Humanos , Hiperinsulinismo/complicaciones , Hiperinsulinismo/metabolismo , Placenta/metabolismo , Embarazo
9.
Nutr Diabetes ; 12(1): 8, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35169132

RESUMEN

BACKGROUND: Gestational diabetes is associated with increased risk of type 2 diabetes mellitus and cardiovascular disease for the mother in the decade after delivery. However, the molecular mechanisms that drive these effects are unknown. Recent studies in humans have shown that lipid metabolism is dysregulated before diagnosis of and during gestational diabetes and we have shown previously that lipid metabolism is also altered in obese female mice before, during and after pregnancy. These observations led us to the hypothesis that this persistent dysregulation reflects an altered control of lipid distribution throughout the organism. METHODS: We tested this in post-weaning (PW) dams using our established mouse model of obese GDM (high fat, high sugar, obesogenic diet) and an updated purpose-built computational tool for plotting the distribution of lipid variables throughout the maternal system (Lipid Traffic Analysis v2.3). RESULTS: This network analysis showed that unlike hyperglycaemia, lipid distribution and traffic do not return to normal after pregnancy in obese mouse dams. A greater range of phosphatidylcholines was found throughout the lean compared to obese post-weaning dams. A range of triglycerides that were found in the hearts of lean post-weaning dams were only found in the livers of obese post-weaning dams and the abundance of odd-chain FA-containing lipids differed locally in the two groups. We have therefore shown that the control of lipid distribution changed for several metabolic pathways, with evidence for changes to the regulation of phospholipid biosynthesis and FA distribution, in a number of tissues. CONCLUSIONS: We conclude that the control of lipid metabolism is altered following an obese pregnancy. These results support the hypothesis that obese dams that developed GDM maintain dysregulated lipid metabolism after pregnancy even when glycaemia returned to normal, and that these alterations could contribute to the increased risk of later type 2 diabetes and cardiovascular disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Animales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Gestacional/metabolismo , Dieta Alta en Grasa/efectos adversos , Femenino , Metabolismo de los Lípidos , Ratones , Embarazo , Destete
10.
Elife ; 112022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35025731

RESUMEN

Maternal obesity during pregnancy has immediate and long-term detrimental effects on the offspring heart. In this study, we characterized the cardiac and circulatory lipid profiles in late gestation E18.5 fetuses of diet-induced obese pregnant mice and established the changes in lipid abundance and fetal cardiac transcriptomics. We used untargeted and targeted lipidomics and transcriptomics to define changes in the serum and cardiac lipid composition and fatty acid metabolism in male and female fetuses. From these analyses we observed: (1) maternal obesity affects the maternal and fetal serum lipidome distinctly; (2) female fetal heart lipidomes are more sensitive to maternal obesity than males; (3) changes in lipid supply might contribute to early expression of lipolytic genes in mouse hearts exposed to maternal obesity. These results highlight the existence of sexually dimorphic responses of the fetal heart to the same in utero obesogenic environment and identify lipids species that might mediate programming of cardiovascular health.


Asunto(s)
Feto/metabolismo , Metabolismo de los Lípidos/fisiología , Miocardio/metabolismo , Obesidad Materna/fisiopatología , Animales , Femenino , Lipidómica , Masculino , Ratones , Miocardio/química , Embarazo , Transcriptoma/fisiología
11.
Int J Obes (Lond) ; 46(2): 269-278, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34663892

RESUMEN

OBJECTIVE: This study investigated the effect of maternal obesity on aged-male offspring liver phenotype and hepatic expression of a programmed miRNA. METHODS: A mouse model (C57BL/6 J) of maternal diet-induced obesity was used to investigate fasting-serum metabolites, hepatic lipid content, steatosis, and relative mRNA levels (RT-PCR) and protein expression (Western blotting) of key components involved in hepatic and mitochondrial metabolism in 12-month-old offspring. We also measured hepatic lipid peroxidation, mitochondrial content, fibrosis stage, and apoptosis in the offspring. To investigate potential mechanisms leading to the observed phenotype, we also measured the expression of miR-582 (a miRNA previously implicated in liver cirrhosis) in 8-week-old and 12-month-old offspring. RESULTS: Body weight and composition was similar between 8-week-old offspring, however, 12-month-old offspring from obese mothers had increased body weight and fat mass (19.5 ± 0.8 g versus 10.4 ± 0.9 g, p < 0.001), as well as elevated serum levels of LDL and leptin and hepatic lipid content (21.4 ± 2.1 g versus 12.9 ± 1.8 g, p < 0.01). This was accompanied by steatosis, increased Bax/Bcl-2 ratio, and overexpression of p-SAPK/JNK, Tgfß1, Map3k14, and Col1a1 in the liver. Decreased levels of Bcl-2, p-AMPKα, total AMPKα and mitochondrial complexes were also observed. Maternal obesity was associated with increased hepatic miR-582-3p (p < 0.001) and miR-582-5p (p < 0.05). Age was also associated with an increase in both miR-582-3p and miR-582-5p, however, this was more pronounced in the offspring of obese dams, such that differences were greater in 12-month-old animals (-3p: 7.34 ± 1.35 versus 1.39 ± 0.50, p < 0.0001 and -5p: 4.66 ± 1.16 versus 1.63 ± 0.65, p < 0.05). CONCLUSION: Our findings demonstrate that maternal diet-induced obesity has detrimental effects on offspring body composition as well as hepatic phenotype that may be indicative of accelerated-ageing phenotype. These whole-body and cellular phenotypes were associated with age-dependent changes in expression of miRNA-582 that might contribute mechanistically to the development of metabolic disorders in the older progeny.


Asunto(s)
Conducta Alimentaria/psicología , Hígado/metabolismo , Enfermedades Metabólicas/dietoterapia , Factores de Edad , Animales , Modelos Animales de Enfermedad , Femenino , Expresión Génica/fisiología , Hígado/fisiopatología , Exposición Materna/efectos adversos , Exposición Materna/estadística & datos numéricos , Enfermedades Metabólicas/etiología , Ratones , Ratones Endogámicos C57BL/metabolismo , Obesidad/complicaciones , Obesidad/dietoterapia , ARN Mensajero
12.
J Physiol ; 600(4): 903-919, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34505282

RESUMEN

Maternal obesity is a global problem that increases the risk of short- and long-term adverse outcomes for mother and child, many of which are linked to gestational diabetes mellitus. Effective treatments are essential to prevent the transmission of poor metabolic health from mother to child. Metformin is an effective glucose lowering drug commonly used to treat gestational diabetes mellitus; however, its wider effects on maternal and fetal health are poorly explored. In this study we used a mouse (C57Bl6/J) model of diet-induced (high sugar/high fat) maternal obesity to explore the impact of metformin on maternal and feto-placental health. Metformin (300 mg kg-1  day-1 ) was given to obese females via the diet and was shown to achieve clinically relevant concentrations in maternal serum (1669 ± 568 nM in late pregnancy). Obese dams developed glucose intolerance during pregnancy and had reduced uterine artery compliance. Metformin treatment of obese dams improved maternal glucose tolerance, reduced maternal fat mass and restored uterine artery function. Placental efficiency was reduced in obese dams, with increased calcification and reduced labyrinthine area. Consequently, fetuses from obese dams weighed less (P < 0.001) at the end of gestation. Despite normalisation of maternal parameters, metformin did not correct placental structure or fetal growth restriction. Metformin levels were substantial in the placenta and fetal circulation (109.7 ± 125.4 nmol g-1 in the placenta and 2063 ± 2327 nM in fetal plasma). These findings reveal the distinct effects of metformin administration during pregnancy on mother and fetus and highlight the complex balance of risk vs. benefits that are weighed in obstetric medical treatments. KEY POINTS: Maternal obesity and gestational diabetes mellitus have detrimental short- and long-term effects for mother and child. Metformin is commonly used to treat gestational diabetes mellitus in many populations worldwide but the effects on fetus and placenta are unknown. In a mouse model of diet-induced obesity and glucose intolerance in pregnancy we show reduced uterine artery compliance, placental structural changes and reduced fetal growth. Metformin treatment improved maternal metabolic health and uterine artery compliance but did not rescue obesity-induced changes in the fetus or placenta. Metformin crossed the placenta into the fetal circulation and entered fetal tissue. Metformin has beneficial effects on maternal health beyond glycaemic control. However, despite improvements in maternal physiology, metformin did not prevent fetal growth restriction or placental ageing. The high uptake of metformin into the placental and fetal circulation highlights the potential for direct immediate effects of metformin on the fetus with possible long-term consequences postnatally.


Asunto(s)
Intolerancia a la Glucosa , Metformina , Obesidad Materna , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Retardo del Crecimiento Fetal , Intolerancia a la Glucosa/metabolismo , Humanos , Transmisión Vertical de Enfermedad Infecciosa , Metformina/metabolismo , Metformina/farmacología , Metformina/uso terapéutico , Ratones , Placenta/metabolismo , Embarazo
13.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34360870

RESUMEN

BACKGROUND: Metformin is commonly used to treat gestational diabetes mellitus. This study investigated the effect of maternal metformin intervention during obese glucose-intolerant pregnancy on the gonadal white adipose tissue (WAT) of 8-week-old male and female mouse offspring. METHODS: C57BL/6J female mice were provided with a control (Con) or obesogenic diet (Ob) to induce pre-conception obesity. Half the obese dams were treated orally with 300 mg/kg/d of metformin (Ob-Met) during pregnancy. Gonadal WAT depots from 8-week-old offspring were investigated for adipocyte size, macrophage infiltration and mRNA expression of pro-inflammatory genes using RT-PCR. RESULTS: Gestational metformin attenuated the adiposity in obese dams and increased the gestation length without correcting the offspring in utero growth restriction and catch-up growth caused by maternal obesity. Despite similar body weight, the Ob and Ob-Met offspring of both sexes showed adipocyte hypertrophy in young adulthood. Male Ob-Met offspring had increased WAT depot weight (p < 0.05), exaggerated adipocyte hyperplasia (p < 0.05 vs. Con and Ob offspring), increased macrophage infiltration measured via histology (p < 0.05) and the mRNA expression of F4/80 (p < 0.05). These changes were not observed in female Ob-Met offspring. CONCLUSIONS: Maternal metformin intervention during obese pregnancy causes excessive adiposity, adipocyte hyperplasia and WAT inflammation in male offspring, highlighting sex-specific effects of prenatal metformin exposure on offspring WAT.


Asunto(s)
Animales Recién Nacidos/metabolismo , Diabetes Gestacional , Metformina/farmacología , Obesidad Materna , Efectos Tardíos de la Exposición Prenatal , Adiposidad , Animales , Diabetes Gestacional/tratamiento farmacológico , Diabetes Gestacional/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad Materna/tratamiento farmacológico , Obesidad Materna/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/patología , Factores Sexuales
14.
Nat Genet ; 53(8): 1233-1242, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34326545

RESUMEN

The agouti viable yellow (Avy) allele is an insertional mutation in the mouse genome caused by a variably methylated intracisternal A particle (VM-IAP) retrotransposon. Avy expressivity is sensitive to a range of early-life chemical exposures and nutritional interventions, suggesting that environmental perturbations can have long-lasting effects on the methylome. However, the extent to which VM-IAP elements are environmentally labile with phenotypic implications is unknown. Using a recently identified repertoire of VM-IAPs, we assessed the epigenetic effects of different environmental contexts. A longitudinal aging analysis indicated that VM-IAPs are stable across the murine lifespan, with only small increases in DNA methylation detected for a subset of loci. No significant effects were observed after maternal exposure to the endocrine disruptor bisphenol A, an obesogenic diet or methyl donor supplementation. A genetic mouse model of abnormal folate metabolism exhibited shifted VM-IAP methylation levels and altered VM-IAP-associated gene expression, yet these effects are likely largely driven by differential targeting by polymorphic KRAB zinc finger proteins. We conclude that epigenetic variability at retrotransposons is not predictive of environmental susceptibility.


Asunto(s)
Metilación de ADN , Disruptores Endocrinos/toxicidad , Obesidad/genética , Retroelementos , Animales , Compuestos de Bencidrilo/toxicidad , Metilación de ADN/efectos de los fármacos , Dieta/efectos adversos , Epigénesis Genética , Femenino , Ferredoxina-NADP Reductasa/genética , Ácido Fólico/genética , Ácido Fólico/metabolismo , Deficiencia de Ácido Fólico/genética , Regulación de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , Mutación , Obesidad/etiología , Fenoles/toxicidad , Embarazo , Efectos Tardíos de la Exposición Prenatal
15.
Int J Mol Sci ; 22(14)2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34299070

RESUMEN

The aim of the current study was to test the hypothesis that maternal lipid metabolism was modulated during normal pregnancy and that these modulations are altered in gestational diabetes mellitus (GDM). We tested this hypothesis using an established mouse model of diet-induced obesity with pregnancy-associated loss of glucose tolerance and a novel lipid analysis tool, Lipid Traffic Analysis, that uses the temporal distribution of lipids to identify differences in the control of lipid metabolism through a time course. Our results suggest that the start of pregnancy is associated with several changes in lipid metabolism, including fewer variables associated with de novo lipogenesis and fewer PUFA-containing lipids in the circulation. Several of the changes in lipid metabolism in healthy pregnancies were less apparent or occurred later in dams who developed GDM. Some changes in maternal lipid metabolism in the obese-GDM group were so late as to only occur as the control dams' systems began to switch back towards the non-pregnant state. These results demonstrate that lipid metabolism is modulated in healthy pregnancy and the timing of these changes is altered in GDM pregnancies. These findings raise important questions about how lipid metabolism contributes to changes in metabolism during healthy pregnancies. Furthermore, as alterations in the lipidome are present before the loss of glucose tolerance, they could contribute to the development of GDM mechanistically.


Asunto(s)
Diabetes Gestacional/patología , Metabolismo de los Lípidos , Lipidómica/métodos , Lípidos/análisis , Obesidad/fisiopatología , Animales , Glucemia/análisis , Diabetes Gestacional/etiología , Diabetes Gestacional/metabolismo , Femenino , Prueba de Tolerancia a la Glucosa , Ratones , Embarazo
16.
Gerontology ; 67(2): 233-242, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33677456

RESUMEN

INTRODUCTION: Due to increasing lifespan, global aging rates are rising rapidly and age-associated diseases are increasing. To ensure that health span is concomitant with life span, a greater understanding of cellular mechanisms of aging is important. METHODS: Telomere length analysis from a wide range of tissues from weaning, young adult, and middle-aged (3, 12 and 52 week) male Wistar rats were conducted using Southern blotting. Telomere lengths were compared between tissues and ages using regression models based on the ratios of longest-to-shortest telomere fragments. RESULTS: Robust linear age-dependent telomere attrition was observed in the liver; 3 versus 12 weeks, 3 versus 52 weeks (p < 0.01), 12 versus 52 weeks (p < 0.05) and the heart; 3 versus 12 weeks (p < 0.05) and 3 versus 52 weeks (p < 0.001). More subtle shortening was observed in aorta and epididymal fat; 3 and 12 versus 52 weeks (p < 0.001) and in skeletal muscle; 3 versus 52 weeks (p < 0.05), 12 versus 52 weeks (p < 0.01). Young thymus telomeres increased in length (3 vs. 12 weeks) and then shortened between 12 and 52 weeks (p < 0.001). We also reported disparity in telomere shortening within tissues: telomeres in aging brain cortex significantly shortened; 3 versus 52 weeks (p < 0.05), 12 versus 52 weeks (p < 0.01). This was not seen in the hypothalamic region. A robust stepwise shortening was observed in the renal cortex; 3 versus 12 weeks, 12 versus 52 weeks (p < 0.05), and 3 versus 52 weeks (p < 0.001), which was not as apparent in the renal medulla; 3 versus 12 weeks (p < 0.01) and 3 versus 52 weeks (p < 0.01). The vastus lateralis skeletal muscle demonstrated the shortest telomere length at weaning and underwent robust age-associated attrition; 3 versus 52 weeks (p < 0.05), 12 versus 52 weeks (p < 0.01). We demonstrated that specific tissues exhibit unique telomere attrition profiles which may partially explain why certain diseases are more prevalent in aged individuals. DISCUSSION/CONCLUSION: We show wide variations between tissues in vulnerability to the aging process. In the future, this may help target potential interventions to improve health span.


Asunto(s)
Acortamiento del Telómero , Telómero , Envejecimiento/genética , Animales , Longevidad , Masculino , Ratas , Ratas Wistar , Telómero/genética
17.
Diabetologia ; 64(4): 890-902, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33501603

RESUMEN

AIMS/HYPOTHESIS: Levels of the microRNA (miRNA) miR-126-3p are programmed cell-autonomously in visceral adipose tissue of adult offspring born to obese female C57BL/6J mice. The spectrum of miR-126-3p targets and thus the consequences of its dysregulation for adipocyte metabolism are unknown. Therefore, the aim of the current study was to identify novel targets of miR-126-3p in vitro and then establish the outcomes of their dysregulation on adipocyte metabolism in vivo using a well-established maternal obesity mouse model. METHODS: miR-126-3p overexpression in 3T3-L1 pre-adipocytes followed by pulsed stable isotope labelling by amino acids in culture (pSILAC) was performed to identify novel targets of the miRNA. Well-established bioinformatics algorithms and luciferase assays were then employed to confirm those that were direct targets of miR-126-3p. Selected knockdown experiments were performed in vitro to define the consequences of target dysregulation. Quantitative real-time PCR, immunoblotting, histology, euglycaemic-hyperinsulinaemic clamps and glucose tolerance tests were performed to determine the phenotypic and functional outcomes of maternal programmed miR-126-3p levels in offspring adipose tissue. RESULTS: The proteomic approach confirmed the identity of known targets of miR-126-3p (including IRS-1) and identified Lunapark, an endoplasmic reticulum (ER) protein, as a novel one. We confirmed by luciferase assay that Lunapark was a direct target of miR-126-3p. Overexpression of miR-126-3p in vitro led to a reduction in Lunapark protein levels and increased Perk (also known as Eif2ak3) mRNA levels and small interference-RNA mediated knockdown of Lunapark led to increased Xbp1, spliced Xbp1, Chop (also known as Ddit3) and Perk mRNA levels and an ER stress transcriptional response in 3T3-L1 pre-adipocytes. Consistent with the results found in vitro, increased miR-126-3p expression in adipose tissue from adult mouse offspring born to obese dams was accompanied by decreased Lunapark and IRS-1 protein levels and increased markers of ER stress. At the whole-body level the animals displayed glucose intolerance. CONCLUSIONS/INTERPRETATION: Concurrently targeting IRS-1 and Lunapark, a nutritionally programmed increase in miR-126-3p causes adipose tissue insulin resistance and an ER stress response, both of which may contribute to impaired glucose tolerance. These findings provide a novel mechanism by which obesity during pregnancy leads to increased risk of type 2 diabetes in the offspring and therefore identify miR-126-3p as a potential therapeutic target.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Estrés del Retículo Endoplásmico , Proteínas de Homeodominio/metabolismo , MicroARNs/metabolismo , Obesidad Materna/metabolismo , Efectos Tardíos de la Exposición Prenatal , Células 3T3-L1 , Adipocitos/patología , Tejido Adiposo/patología , Animales , Glucemia/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Proteínas de Homeodominio/genética , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Resistencia a la Insulina , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Obesidad Materna/genética , Obesidad Materna/patología , Fenotipo , Embarazo , Transducción de Señal
18.
Anal Bioanal Chem ; 412(12): 2851-2862, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32144454

RESUMEN

Lipidomics is of increasing interest in studies of biological systems. However, high-throughput data collection and processing remains non-trivial, making assessment of phenotypes difficult. We describe a platform for surveying the lipid fraction for a range of tissues. These techniques are demonstrated on a set of seven different tissues (serum, brain, heart, kidney, adipose, liver, and vastus lateralis muscle) from post-weaning mouse dams that were either obese (> 12 g fat mass) or lean (<5 g fat mass). This showed that the lipid metabolism in some tissues is affected more by obesity than others. Analysis of human serum (healthy non-pregnant women and pregnant women at 28 weeks' gestation) showed that the abundance of several phospholipids differed between groups. Human placenta from mothers with high and low BMI showed that lean placentae contain less polyunsaturated lipid. This platform offers a way to map lipid metabolism with immediate application in metabolic research and elsewhere. Graphical abstract.


Asunto(s)
Lipidómica/métodos , Lípidos/análisis , Lípidos/farmacocinética , Obesidad/fisiopatología , Delgadez/fisiopatología , Animales , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Embarazo , Distribución Tisular
19.
Int J Obes (Lond) ; 44(5): 1087-1096, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32203108

RESUMEN

BACKGROUND: In utero exposure to obesity is consistently associated with increased risk of metabolic disease, obesity and cardiovascular dysfunction in later life despite the divergence of birth weight outcomes. The placenta plays a critical role in offspring development and long-term health, as it mediates the crosstalk between the maternal and fetal environments. However, its phenotypic and molecular modifications in the context of maternal obesity associated with fetal growth restriction (FGR) remain poorly understood. METHODS: Using a mouse model of maternal diet-induced obesity, we investigated changes in the placental transcriptome through RNA sequencing (RNA-seq) and Ingenuity Pathway Analysis (IPA) at embryonic day (E) 19. The most differentially expressed genes (FDR < 0.05) were validated by Quantitative real-time PCR (qPCR) in male and female placentae at E19. The expression of these targets and related genes was also determined by qPCR at E13 to examine whether the observed alterations had an earlier onset at mid-gestation. Structural analyses were performed using immunofluorescent staining against Ki67 and CD31 to investigate phenotypic outcomes at both timepoints. RESULTS: RNA-seq and IPA analyses revealed differential expression of transcripts and pathway interactions related to placental vascular development and tissue morphology in obese placentae at term, including downregulation of Muc15, Cnn1, and Acta2. Pdgfb, which is implicated in labyrinthine layer development, was downregulated in obese placentae at E13. This was consistent with the morphological evidence of reduced labyrinth zone (LZ) size, as well as lower fetal weight at both timepoints irrespective of offspring sex. CONCLUSIONS: Maternal obesity results in abnormal placental LZ development and impaired vascularization, which may mediate the observed FGR through reduced transfer of nutrients across the placenta.


Asunto(s)
Retardo del Crecimiento Fetal , Obesidad Materna , Placenta , Transcriptoma/genética , Animales , Modelos Animales de Enfermedad , Femenino , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad Materna/genética , Obesidad Materna/metabolismo , Placenta/metabolismo , Placenta/patología , Embarazo
20.
Diabetologia ; 63(2): 324-337, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31773193

RESUMEN

AIMS/HYPOTHESIS: Obesity during pregnancy increases offspring type 2 diabetes risk. Given that nearly half of women of child-bearing age in many populations are currently overweight/obese, it is key that we improve our understanding of the impact of the in utero/early life environment on offspring islet function. Whilst a number of experimental studies have examined the effect of maternal obesity on offspring islet architecture and/or function, it has not previously been delineated whether these changes are independent of other confounding risk factors such as obesity, postnatal high-fat-feeding and ageing. Thus, we aimed to study the impact of exposure to maternal obesity on offspring islets in young, glucose-tolerant male and female offspring. METHODS: Female C57BL/6J mice were fed ad libitum either chow or obesogenic diet prior to and throughout pregnancy and lactation. Offspring were weaned onto a chow diet and remained on this diet until the end of the study. An IPGTT was performed on male and female offspring at 7 weeks of age. At 8 weeks of age, pancreatic islets were isolated from offspring for measurement of insulin secretion and content, mitochondrial respiration, ATP content, reactive oxygen species levels, beta and alpha cell mass, granule and mitochondrial density (by transmission electron microscopy), and mRNA and protein expression by real-time RT-PCR and Western blotting, respectively. RESULTS: Glucose tolerance was similar irrespective of maternal diet and offspring sex. However, blood glucose was lower (p < 0.001) and plasma insulin higher (p < 0.05) in female offspring of obese dams 15 min after glucose administration. This was associated with higher glucose- (p < 0.01) and leucine/glutamine-stimulated (p < 0.05) insulin secretion in these offspring. Furthermore, there was increased mitochondrial respiration (p < 0.01) and density (p < 0.05) in female offspring of obese dams compared with same-sex controls. Expression of mitochondrial and nuclear-encoded components of the electron transport chain, L-type Ca2+ channel subtypes that play a key role in stimulus-secretion coupling [Cacna1d (p < 0.05)], and oestrogen receptor α (p < 0.05) was also increased in islets from these female offspring of obese dams. Moreover, cleaved caspase-3 expression and BAX:Bcl-2 were decreased (p < 0.05) reflecting reduced susceptibility to apoptosis. In contrast, in male offspring, glucose and leucine/glutamine-stimulated insulin secretion was comparable between treatment groups. There was, however, compromised mitochondrial respiration characterised by decreased ATP synthesis-driven respiration (p < 0.05) and increased uncoupled respiration (p < 0.01), reduced docked insulin granules (p < 0.001), decreased Cacna1c (p < 0.001) and Cacna1d (p < 0.001) and increased cleaved caspase-3 expression (p < 0.05). CONCLUSIONS/INTERPRETATION: Maternal obesity programs sex differences in offspring islet function. Islets of female but not male offspring appear to be primed to cope with a nutritionally-rich postnatal environment, which may reflect differences in future type 2 diabetes risk.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Islotes Pancreáticos/metabolismo , Obesidad Materna/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Apoptosis/fisiología , Western Blotting , ADN Mitocondrial/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Consumo de Oxígeno/fisiología , Embarazo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Caracteres Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...