Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Theriogenology ; 220: 70-76, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38484673

RESUMEN

Because of the time-consuming nature of surgical neutering and the rapid rate of reproduction among domestic cats, it is crucial to investigate alternative, nonsurgical methods of contraception for this species. Sperm protein IZUMO1 and its oocyte receptor JUNO have been proposed as potential targets for nonsurgical contraceptives. This study aimed to demonstrate (1) the protein coding sequence of feline IZUMO1 and JUNO, (2) gene expression in specific organs by measuring mRNA levels in different visceral tissues, and (3) the expression of IZUMO1 and JUNO during sperm maturation and folliculogenesis, respectively. Amplification for sequencing of feline IZUMO1 and JUNO was performed using the RT-PCR method. Levels of gene expression in different tissues were evaluated using real-time PCR. In situ hybridization was performed to localize JUNO mRNA in ovarian tissues. The complete coding sequences of IZUMO1 and JUNO were obtained and analyzed. A comparison between protein orthologs demonstrated the conservation of IZUMO1 and JUNO in Felidae. The real-time PCR results from various visceral organs indicated that IZUMO1 was significantly higher in the testis than in other organs, whereas JUNO was significantly higher in the ovary than in other organs. Expression of IZUMO1 was found to be higher in the testes than in the caput, corpus, and cauda of epididymides. In situ hybridization revealed that JUNO mRNA was in the ooplasm and nucleus of the primordial, primary, secondary, and antral follicles. Importantly, this was the first study to demonstrate the IZUMO1 and JUNO genes in the testis and ovary of cats. The results are useful for future research related to these genes and for developing contraceptives against these targets.


Asunto(s)
Proteínas de la Membrana , Receptores de Superficie Celular , Femenino , Gatos/genética , Masculino , Animales , Receptores de Superficie Celular/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Interacciones Espermatozoide-Óvulo , Espermatozoides/metabolismo , Inmunoglobulinas/genética , Inmunoglobulinas/metabolismo , Semen/metabolismo , Gónadas/metabolismo , Anticonceptivos
2.
Front Neuroanat ; 16: 868345, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35601999

RESUMEN

Most of the studies on neurochemical mapping, connectivity, and physiology in the hypothalamic region were carried out in rats and under the columnar morphologic paradigm. According to the columnar model, the entire hypothalamic region lies ventrally within the diencephalon, which includes preoptic, anterior, tuberal, and mamillary anteroposterior regions, and sometimes identifying dorsal, intermediate, and ventral hypothalamic partitions. This model is weak in providing little or no experimentally corroborated causal explanation of such subdivisions. In contrast, the modern prosomeric model uses different axial assumptions based on the parallel courses of the brain floor, alar-basal boundary, and brain roof (all causally explained). This model also postulates that the hypothalamus and telencephalon jointly form the secondary prosencephalon, separately from and rostral to the diencephalon proper. The hypothalamus is divided into two neuromeric (transverse) parts called peduncular and terminal hypothalamus (PHy and THy). The classic anteroposterior (AP) divisions of the columnar hypothalamus are rather seen as dorsoventral subdivisions of the hypothalamic alar and basal plates. In this study, we offered a prosomeric immunohistochemical mapping in the rat of hypothalamic cells expressing tyrosine hydroxylase (TH), which is the enzyme that catalyzes the conversion of L-tyrosine to levodopa (L-DOPA) and a precursor of dopamine. This mapping was also combined with markers for diverse hypothalamic nuclei [agouti-related peptide (Agrp), arginine vasopressin (Avp), cocaine and amphetamine-regulated transcript (Cart), corticotropin releasing Hormone (Crh), melanin concentrating hormone (Mch), neuropeptide Y (Npy), oxytocin/neurophysin I (Oxt), proopiomelanocortin (Pomc), somatostatin (Sst), tyrosine hidroxilase (Th), and thyrotropin releasing hormone (Trh)]. TH-positive cells are particularly abundant within the periventricular stratum of the paraventricular and subparaventricular alar domains. In the tuberal region, most labeled cells are found in the acroterminal arcuate nucleus and in the terminal periventricular stratum. The dorsal retrotuberal region (PHy) contains the A13 cell group of TH-positive cells. In addition, some TH cells appear in the perimamillary and retromamillary regions. The prosomeric model proved useful for determining the precise location of TH-positive cells relative to possible origins of morphogenetic signals, thus aiding potential causal explanation of position-related specification of this hypothalamic cell type.

3.
Genes (Basel) ; 13(5)2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35627303

RESUMEN

Fish have colonized nearly all aquatic niches, making them an invaluable resource to understand vertebrate adaptation and gene family evolution, including the evolution of complex neural networks and modulatory neurotransmitter pathways. Among ancient regulatory molecules, the gaseous messenger nitric oxide (NO) is involved in a wide range of biological processes. Because of its short half-life, the modulatory capability of NO is strictly related to the local activity of nitric oxide synthases (Nos), enzymes that synthesize NO from L-arginine, making the localization of Nos mRNAs a reliable indirect proxy for the location of NO action domains, targets, and effectors. Within the diversified actinopterygian nos paralogs, nos1 (alias nnos) is ubiquitously present as a single copy gene across the gnathostome lineage, making it an ideal candidate for comparative studies. To investigate variations in the NO system across ray-finned fish phylogeny, we compared nos1 expression patterns during the development of two well-established experimental teleosts (zebrafish and medaka) with an early branching holostean (spotted gar), an important evolutionary bridge between teleosts and tetrapods. Data reported here highlight both conserved expression domains and species-specific nos1 territories, confirming the ancestry of this signaling system and expanding the number of biological processes implicated in NO activities.


Asunto(s)
Evolución Molecular , Pez Cebra , Animales , Sistema Nervioso , Óxido Nítrico , Filogenia
4.
Brain Behav Evol ; 96(4-6): 334-352, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35034027

RESUMEN

This essay re-examines the singular case of the supposedly unique rostrally elongated notochord described classically in amphioxus. We start from our previous observations in hpf 21 larvae [Albuixech-Crespo et al.: PLoS Biol. 2017;15(4):e2001573] indicating that the brain vesicle has rostrally a rather standard hypothalamic molecular configuration. This correlates with the notochord across a possible rostromedian acroterminal hypothalamic domain. The notochord shows some molecular differences that specifically characterize its pre-acroterminal extension beyond its normal rostral end under the mamillary region. We explored an alternative interpretation that the putative extension of this notochord actually represents a variant form of the prechordal plate in amphioxus, some of whose cells would adopt the notochordal typology, but would lack notochordal patterning properties, and might have some (but not all) prechordal ones instead. We survey in detail the classic and recent literature on gastrulation, prechordal plate, and notochord formation in amphioxus, compare the observed patterns with those of some other vertebrates of interest, and re-examine the literature on differential gene expression patterns in this rostralmost area of the head. We noted that previous literature failed to identify the amphioxus prechordal primordia at appropriate stages. Under this interpretation, a consistent picture can be drawn for cephalochordates, tunicates, and vertebrates. Moreover, there is little evidence for an intrinsic capacity of the early notochord to grow rostralwards (it normally elongates caudalwards). Altogether, we conclude that the hypothesis of a prechordal nature of the elongated amphioxus notochord is consistent with the evidence presented.


Asunto(s)
Anfioxos , Animales , Hipotálamo , Anfioxos/genética , Notocorda/metabolismo , Vertebrados
5.
Front Endocrinol (Lausanne) ; 12: 638261, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34040580

RESUMEN

A well-documented method and experimental design are essential to ensure the reproducibility and reliability in animal research. Experimental studies using exercise programs in animal models have experienced an exponential increase in the last decades. Complete reporting of forced wheel and treadmill exercise protocols would help to ensure the reproducibility of training programs. However, forced exercise programs are characterized by a poorly detailed methodology. Also, current guidelines do not cover the minimum data that must be included in published works to reproduce training programs. For this reason, we have carried out a systematic review to determine the reproducibility of training programs and experimental designs of published research in rodents using a forced wheel system. Having determined that most of the studies were not detailed enough to be reproducible, we have suggested guidelines for animal research using FORCED exercise wheels, which could also be applicable to any form of forced exercise.


Asunto(s)
Experimentación Animal/normas , Modelos Animales de Enfermedad , Prueba de Esfuerzo , Condicionamiento Físico Animal , Animales , Ejercicio Físico , Femenino , Humanos , Humedad , Masculino , Ratones , Ratas , Reproducibilidad de los Resultados , Riesgo , Temperatura
6.
Mol Neurobiol ; 58(4): 1782-1791, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33394335

RESUMEN

Improving exercise capacity during adolescence impacts positively on cognitive and motor functions. However, the neural mechanisms contributing to enhance physical performance during this sensitive period remain poorly understood. Such knowledge could help to optimize exercise programs and promote a healthy physical and cognitive development in youth athletes. The central dopamine system is of great interest because of its role in regulating motor behavior through the activation of D1 and D2 receptors. Thus, the aim of the present study is to determine whether D1 or D2 receptor signaling contributes to modulate the exercise capacity during adolescence and if this modulation takes place through the striatum. To test this, we used a rodent model of forced running wheel that we implemented recently to assess the exercise capacity. Briefly, rats were exposed to an 8-day period of habituation in the running wheel before assessing their locomotor performance in response to an incremental exercise test, in which the speed was gradually increased until exhaustion. We found that systemic administration of D1-like (SCH23390) and/or D2-like (raclopride) receptor antagonists prior to the incremental test reduced the duration of forced running in a dose-dependent manner. Similarly, locomotor activity in the open field was decreased by the dopamine antagonists. Interestingly, this was not the case following intrastriatal infusion of an effective dose of SCH23390, which decreased motor performance during the incremental test without disrupting the behavioral response in the open field. Surprisingly, intrastriatal delivery of raclopride failed to impact the duration of forced running. Altogether, these results indicate that the level of locomotor response to incremental loads of forced running in adolescent rats is dopamine dependent and mechanistically linked to the activation of striatal D1 and extra-striatal D2 receptors.


Asunto(s)
Envejecimiento/fisiología , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Condicionamiento Físico Animal , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Animales , Antagonistas de los Receptores de Dopamina D2/farmacología , Habituación Psicofisiológica , Masculino , Actividad Motora , Prueba de Campo Abierto , Ratas Sprague-Dawley , Receptores de Dopamina D1/antagonistas & inhibidores
7.
Genome Biol ; 21(1): 267, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-33100228

RESUMEN

BACKGROUND: One of the most unusual sources of phylogenetically restricted genes is the molecular domestication of transposable elements into a host genome as functional genes. Although these kinds of events are sometimes at the core of key macroevolutionary changes, their origin and organismal function are generally poorly understood. RESULTS: Here, we identify several previously unreported transposable element domestication events in the human and mouse genomes. Among them, we find a remarkable molecular domestication that gave rise to a multigenic family in placental mammals, the Bex/Tceal gene cluster. These genes, which act as hub proteins within diverse signaling pathways, have been associated with neurological features of human patients carrying genomic microdeletions in chromosome X. The Bex/Tceal genes display neural-enriched patterns and are differentially expressed in human neurological disorders, such as autism and schizophrenia. Two different murine alleles of the cluster member Bex3 display morphological and physiopathological brain modifications, such as reduced interneuron number and hippocampal electrophysiological imbalance, alterations that translate into distinct behavioral phenotypes. CONCLUSIONS: We provide an in-depth understanding of the emergence of a gene cluster that originated by transposon domestication and gene duplication at the origin of placental mammals, an evolutionary process that transformed a non-functional transposon sequence into novel components of the eutherian genome. These genes were integrated into existing signaling pathways involved in the development, maintenance, and function of the CNS in eutherians. At least one of its members, Bex3, is relevant for higher brain functions in placental mammals and may be involved in human neurological disorders.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Elementos Transponibles de ADN , Domesticación , Euterios/genética , Familia de Multigenes , Animales , Trastorno del Espectro Autista/genética , Encéfalo , Sistemas CRISPR-Cas , Proteínas de Unión al ADN/genética , Evolución Molecular , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Trastornos del Neurodesarrollo/genética , Proteínas Nucleares/genética , Filogenia , Placenta , Embarazo , Serina-Treonina Quinasas TOR/genética , Factores de Transcripción/genética
8.
Development ; 147(16)2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32675279

RESUMEN

Neuronal phenotypes are controlled by terminal selector transcription factors in invertebrates, but only a few examples of such regulators have been provided in vertebrates. We hypothesised that TCF7L2 regulates different stages of postmitotic differentiation in the thalamus, and functions as a thalamic terminal selector. To investigate this hypothesis, we used complete and conditional knockouts of Tcf7l2 in mice. The connectivity and clustering of neurons were disrupted in the thalamo-habenular region in Tcf7l2-/- embryos. The expression of subregional thalamic and habenular transcription factors was lost and region-specific cell migration and axon guidance genes were downregulated. In mice with a postnatal Tcf7l2 knockout, the induction of genes that confer thalamic terminal electrophysiological features was impaired. Many of these genes proved to be direct targets of TCF7L2. The role of TCF7L2 in terminal selection was functionally confirmed by impaired firing modes in thalamic neurons in the mutant mice. These data corroborate the existence of master regulators in the vertebrate brain that control stage-specific genetic programmes and regional subroutines, maintain regional transcriptional network during embryonic development, and induce terminal selection postnatally.


Asunto(s)
Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Mitosis , Transmisión Sináptica , Tálamo/embriología , Factor de Transcripción 4/metabolismo , Animales , Ratones , Ratones Noqueados , Tálamo/citología , Factor de Transcripción 4/genética
9.
Front Physiol ; 11: 410, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32499715

RESUMEN

It has been demonstrated that physical activity contributes to a healthier life. However, there is a knowledge gap regarding the neural mechanisms producing these effects. One of the keystones to deal with this problem is to use training programs with equal loads of physical activity. However, irregular motor and stress responses have been found in murine exercise models. Habituation to forced exercise facilitates a complete response to a training program in all rodents, reaching the same load of physical activity among animals. Here, it was evaluated if glucose and lactate - which are stress biomarkers - are increased during the habituation to exercise. Sprague-Dawley rats received an 8-days habituation protocol with progressive increments of time and speed of running. Then, experimental and control (non-habituated) rats were subjected to an incremental test. Blood samples were obtained to determine plasmatic glucose and lactate levels before, immediately after and 30 min after each session of training. Crh and Avp mRNA expression was determined by two-step qPCR. Our results revealed that glucose and lactate levels are not increased during the habituation period and tend to decrease toward the end of the protocol. Also, Crh and Avp were not chronically activated by the habituation program. Lactate and glucose, determined after the incremental test, were higher in control rats without previous contact with the wheel, compared with habituated and wheel control rats. These results suggest that the implementation of an adaptive phase prior to forced exercise programs might avoid non-specific stress responses.

10.
Mol Metab ; 37: 100985, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32311511

RESUMEN

OBJECTIVE: Hypothalamic arcuate proopiomelanocortin (Arc-POMC) neurons are involved in different physiological processes such as the regulation of energy balance, glucose homeostasis, and stress-induced analgesia. Since these neurons heterogeneously express different biological markers and project to many hypothalamic and extrahypothalamic areas, it is proposed that Arc-POMC neurons could be classified into different subpopulations having diverse physiological roles. The aim of the present study was to characterize the contribution of the subpopulation of Arc-POMC neurons cosecreting gamma-aminobutyric acid (GABA) neurotransmitter in the control of energy balance. METHODS: Arc-Pomc expression restricted to GABAergic-POMC neurons was achieved by crossing a reversible Pomc-deficient mouse line (arcPomc-) with a tamoxifen-inducible Gad2-CreER transgenic line. Pomc expression was rescued in the compound arcPomc-/-:Gad2-CreER female and male mice by tamoxifen treatment at postnatal days 25 (P25) or 60 (P60), and body weight, daily food intake, fasting glycemia, and fasting-induced hyperphagia were measured. POMC recovery was quantified by immunohistochemistry and semiquantitative RT-PCR. Neuropeptide Y (NPY) and GABAergic neurons were identified by in situ hybridization. Arc-POMC neurons projecting to the dorsomedial hypothalamic nucleus (DMH) were studied by stereotactic intracerebral injection of fluorescent retrobeads into the DMH. RESULTS: Tamoxifen treatment of arcPomc-/-:Gad2-CreER mice at P60 resulted in Pomc expression in ∼23-25% of Arc-POMC neurons and ∼15-23% of Pomc mRNA levels, compared to Gad2-CreER control mice. Pomc rescue in GABAergic-POMC neurons at P60 normalized food intake, glycemia, and fasting-induced hyperphagia, while significantly reducing body weight. Energy balance was also improved in arcPomc-/-:Gad2-CreER mice treated with tamoxifen at P25. Distribution analysis of rescued POMC immunoreactive fibers revealed that the DMH is a major target site of GABAergic-POMC neurons. Further, the expression of the orexigenic neuropeptide Y (NPY) in the DMH was increased in arcPomc-/- obese mice but was completely restored after Pomc rescue in arcPomc-/-:Gad2-CreER mice. Finally, we found that ∼75% of Arc-POMC neurons projecting to the DMH are GABAergic. CONCLUSIONS: In the present study, we show that the expression of Pomc in the subpopulation of Arc-GABAergic-POMC neurons is sufficient to maintain normal food intake. In addition, we found that DMH-NPY expression is negatively correlated with Pomc expression in GABAergic-POMC neurons, suggesting that food intake may be regulated by an Arc-GABAergic-POMC → DMH-NPY pathway.


Asunto(s)
Ingestión de Alimentos/genética , Neuronas GABAérgicas/clasificación , Proopiomelanocortina/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Peso Corporal , Núcleo Hipotalámico Dorsomedial/metabolismo , Ingestión de Alimentos/fisiología , Metabolismo Energético/fisiología , Femenino , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Hipotálamo/metabolismo , Leptina/metabolismo , Masculino , Ratones , Ratones Obesos , Neuropéptido Y/metabolismo , Proopiomelanocortina/genética
11.
Front Neuroanat ; 13: 59, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31275117

RESUMEN

The prosomeric brain model contemplates progressive regionalization of the central nervous system (CNS) from a molecular and morphological ontogenetic perspective. It defines the forebrain axis relative to the notochord, and contemplates intersecting longitudinal (zonal, columnar) and transversal (neuromeric) patterning mechanisms. A checkboard pattern of histogenetic units of the neural wall results, where each unit is differentially fated by an unique profile of active genes. These natural neural units later expand their radial dimension during neurogenesis, histogenesis, and correlative differential morphogenesis. This fundamental topologic framework is shared by all vertebrates, as a Bauplan, each lineage varying in some subtle aspects. So far the prosomeric model has been applied only to neural structures, but we attempt here a prosomeric analysis of the hypothesis that major vessels invade the brain wall in patterns that are congruent with its intrinsic natural developmental units, as postulated in the prosomeric model. Anatomic and embryologic studies of brain blood vessels have classically recorded a conserved pattern of branches (thus the conventional terminology), and clinical experience has discovered a standard topography of many brain arterial terminal fields. Such results were described under assumptions of the columnar model of the forebrain, prevalent during the last century, but this is found insufficient in depth and explanatory power in the modern molecular scenario. We have thus explored the possibility that brain vascularization in rodents and humans may relate systematically to genoarchitectonic forebrain subdivisions contemplated in the prosomeric model. Specifically, we examined first whether early vascular invasion of some molecularly characterized prosomeric domains shows heterochrony. We indeed found a heterochronic pattern of vascular invasion that distinguishes between adjacent brain areas with differential molecular profiles. We next mapped topologically on the prosomeric model the major arterial branches serving the human brain. The results of this approach bear on the possibility of a developmentally-based modern arterial terminology.

12.
Anat Rec (Hoboken) ; 302(3): 452-462, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29659196

RESUMEN

Amphioxus is the living chordate closest to the ancestral form of vertebrates, and in a key position to reveal essential aspects of the evolution of the brain Bauplan of vertebrates. The dorsal neural cord of this species at the larval stage is characterized by a small cerebral vesicle at its anterior end and a large posterior region. The latter is comparable in some aspects to the hindbrain and spinal cord regions of vertebrates. The rostral end of the cerebral vesicle contains a median pigment spot and associated rows of photoreceptor and other nerve cells; this complex is known as "the frontal eye." However, this is not a complete eye in the sense that it has neither eye muscles nor lens (only a primitive retina-like tissue). Cranial nerves III, IV, and VI take part in the motor control of eye muscles in all vertebrates. Using a recent model that postulates distinct molecularly characterized hypothalamo-prethalamic and mesodiencephalic domains in the early cerebral vesicle of amphioxus, we analyze here possible scenarios for the origin from the common ancestor of cephalochordates and vertebrates of the cranial nerves related with extrinsic eye muscle innervations. Anat Rec, 302:452-462, 2019. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Encéfalo/citología , Nervios Craneales/citología , Regulación del Desarrollo de la Expresión Génica , Sistema Nervioso/citología , Músculos Oculomotores/citología , Animales , Evolución Biológica , Encéfalo/fisiología , Nervios Craneales/fisiología , Anfioxos , Músculos Oculomotores/inervación , Músculos Oculomotores/fisiología
13.
PLoS Biol ; 15(4): e2001573, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28422959

RESUMEN

All vertebrate brains develop following a common Bauplan defined by anteroposterior (AP) and dorsoventral (DV) subdivisions, characterized by largely conserved differential expression of gene markers. However, it is still unclear how this Bauplan originated during evolution. We studied the relative expression of 48 genes with key roles in vertebrate neural patterning in a representative amphioxus embryonic stage. Unlike nonchordates, amphioxus develops its central nervous system (CNS) from a neural plate that is homologous to that of vertebrates, allowing direct topological comparisons. The resulting genoarchitectonic model revealed that the amphioxus incipient neural tube is unexpectedly complex, consisting of several AP and DV molecular partitions. Strikingly, comparison with vertebrates indicates that the vertebrate thalamus, pretectum, and midbrain domains jointly correspond to a single amphioxus region, which we termed Di-Mesencephalic primordium (DiMes). This suggests that these domains have a common developmental and evolutionary origin, as supported by functional experiments manipulating secondary organizers in zebrafish and mice.


Asunto(s)
Encéfalo/embriología , Embrión no Mamífero/embriología , Anfioxos/embriología , Tubo Neural/embriología , Vertebrados/embriología , Animales , Evolución Biológica , Tipificación del Cuerpo/genética , Encéfalo/metabolismo , Embrión de Pollo , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hibridación Fluorescente in Situ , Anfioxos/metabolismo , Masculino , Ratones Noqueados , Modelos Biológicos , Modelos Genéticos , Tubo Neural/metabolismo , Vertebrados/metabolismo , Pez Cebra
14.
J Comp Neurol ; 525(4): 715-752, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-27539385

RESUMEN

Our previous analysis of progenitor domains in the pretectum of Xenopus revealed three molecularly distinct anteroposterior subdivisions, identified as precommissural (PcP), juxtacommissural (JcP), and commissural (CoP) histogenetic domains (Morona et al. [2011] J Comp Neurol 519:1024-1050). Here we analyzed at later developmental stages the nuclei derived from these areas, attending to their gene expression patterns and histogenesis. Transcription-factor gene markers were used to selectively map derivatives of each domain: Pax7 and Pax6 (CoP); Foxp1 and Six3 (JcP); and Xiro1, VGlut2, Ebf1, and Ebf3 (PcP). Additional genoarchitectural information was provided by the expression of Gbx2, NPY, Lhx1, and Lhx9. This allowed both unambiguous characterization of the anuran pretectal nuclei with regard to their origin in the three early anteroposterior progenitor domains, and their comparison with counterparts in the chick and mouse pretectum. Our observations demonstrated a molecular conservation, during practically all the stages analyzed, for most of the main markers used to define genoarchitecturally the main derivatives of each pretectal domain. We found molecular evidence to propose homologous derivatives from the CoP (olivary pretectal, parvocellular, and magnocellular posterior commissure and lateral terminal nuclei), JcP (spiriformis lateral and lateral terminal nuclei), and PcP (anterior pretectal nucleus) to those described in avian studies. These results represent significant progress in the comprehension of the diencephalic region of Xenopus and show that the organization of the pretectum possesses many features shared with birds. J. Comp. Neurol. 525:715-752, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Desarrollo Embrionario/fisiología , Neurogénesis/fisiología , Área Pretectal/embriología , Animales , Perfilación de la Expresión Génica , Inmunohistoquímica , Hibridación in Situ , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcriptoma , Xenopus laevis
15.
Dev Biol ; 361(1): 12-26, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22019302

RESUMEN

The interpeduncular nucleus (IP) is a key limbic structure, highly conserved evolutionarily among vertebrates. The IP receives indirect input from limbic areas of the telencephalon, relayed by the habenula via the fasciculus retroflexus. The function of the habenulo-IP complex is poorly understood, although there is evidence that in rodents it modulates behaviors such as learning and memory, avoidance, reward and affective states. The IP has been an important subject of interest for neuroscientists, and there are multiple studies about the adult structure, chemoarchitecture and its connectivity, with complex results, due to the presence of multiple cell types across a variety of subnuclei. However, the ontogenetic origins of these populations have not been examined, and there is some controversy about its location in the midbrain-anterior hindbrain area. To address these issues, we first investigated the anteroposterior (AP) origin of the IP complex by fate-mapping its neuromeric origin in the chick, discovering that the IP develops strictly within isthmus and rhombomere 1. Next, we studied the dorsoventral (DV) positional identity of subpopulations of the IP complex. Our results indicate that there are at least four IP progenitor domains along the DV axis. These specific domains give rise to distinct subtypes of cell populations that target the IP with variable subnuclear specificity. Interestingly, these populations can be characterized by differential expression of the transcription factors Pax7, Nkx6.1, Otp, and Otx2. Each of these subpopulations follows a specific route of migration from its source, and all reach the IP roughly at the same stage. Remarkably, IP progenitor domains were found both in the alar and basal plates. Some IP populations showed rostrocaudal restriction in their origins (isthmus versus anterior or posterior r1 regions). A tentative developmental model of the structure of the avian IP is proposed. The IP emerges as a plurisegmental and developmentally heterogeneous formation that forms ventromedially within the isthmus and r1. These findings are relevant since they help to understand the highly complex chemoarchitecture, hodology and functions of this important brainstem structure.


Asunto(s)
Linaje de la Célula/fisiología , Movimiento Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Sistema Límbico/citología , Sistema Límbico/embriología , Modelos Biológicos , Animales , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica/genética , Inmunohistoquímica , Hibridación in Situ , Factor de Transcripción PAX7/metabolismo
16.
Genome Biol Evol ; 3: 551-64, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21680890

RESUMEN

Organisms show striking differences in genome structure; however, the functional implications and fundamental forces that govern these differences remain obscure. The intron-exon organization of nuclear genes is involved in a particularly large variety of structures and functional roles. We performed a 22-species study of Meis/hth genes, intron-rich homeodomain-containing transcription factors involved in a wide range of developmental processes. Our study revealed three surprising results that suggest important and very different functions for Meis intron-exon structures. First, we find unexpected conservation across species of intron positions and lengths along most of the Meis locus. This contrasts with the high degree of structural divergence found in genome-wide studies and may attest to conserved regulatory elements residing within these conserved introns. Second, we find very different evolutionary histories for the 5' and 3' regions of the gene. The 5'-most 10 exons, which encode the highly conserved Meis domain and homeodomain, show striking conservation. By contrast, the 3' of the gene, which encodes several domains implicated in transcriptional activation and response to cell signaling, shows a remarkably active evolutionary history, with diverse isoforms and frequent creation and loss of new exons and splice sites. This region-specific diversity suggests evolutionary "tinkering," with alternative splicing allowing for more subtle regulation of protein function. Third, we find a large number of cases of convergent evolution in the 3' region, including 1) parallel losses of ancestral coding sequence, 2) parallel gains of external and internal splice sites, and 3) recurrent truncation of C-terminal coding regions. These results attest to the importance of locus-specific splicing functions in differences in structural evolution across genes, as well as to commonalities of forces shaping the evolution of individual genes along different lineages.


Asunto(s)
Empalme Alternativo , Evolución Molecular , Proteínas de Homeodominio/genética , Invertebrados/genética , Vertebrados/genética , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Animales , Secuencia de Bases , Secuencia Conservada , Exones , Humanos , Intrones , Invertebrados/clasificación , Vertebrados/clasificación
17.
Dev Dyn ; 240(6): 1475-92, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21465619

RESUMEN

Members of the Meis family of TALE homeobox transcription factors are involved in many processes of vertebrate development and morphogenesis, showing extremely complex transcriptional and spatiotemporal expression patterns. In this work, we performed a comprehensive study of chicken Meis genes using multiple approaches. First, we assessed whether the chicken genome contains a Meis3 ortholog or harbors only two Meis genes; we gathered several lines of evidence pointing to a specific loss of the Meis3 ortholog in an early ancestor of birds. Next, we studied the transcriptional diversity generated from chicken Meis genes through alternative splicing during development. Finally, we performed a detailed analysis of chick Meis1/2 expression patterns during early embryogenesis and organogenesis. We show that the expression of both Meis genes begins at the gastrulation stage in the three embryonic layers, presenting highly dynamic patterns with overlapping as well as distinct expression domains throughout development.


Asunto(s)
Pollos/genética , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Variación Genética/genética , Proteínas de Homeodominio/genética , Proteínas de Neoplasias/genética , Animales , Animales Modificados Genéticamente , Aves/embriología , Aves/genética , Aves/metabolismo , Embrión de Pollo , Pollos/crecimiento & desarrollo , Pollos/metabolismo , Desarrollo Embrionario/fisiología , Dosificación de Gen/fisiología , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/fisiología , Modelos Biológicos , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Proteínas de Neoplasias/metabolismo , Organogénesis/genética , Organogénesis/fisiología , Homología de Secuencia , Factores de Transcripción/genética , Transcripción Genética/fisiología
18.
J Comp Neurol ; 519(1): 125-47, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21120931

RESUMEN

We are interested in stable gene network activities operating sequentially during inner ear specification. The implementation of this patterning process is a key event in the generation of functional subdivisions of the otic vesicle during early embryonic development. The vertebrate inner ear is a complex sensory structure that is a good model system for characterization of developmental mechanisms controlling patterning and specification. Meis genes, belonging to the TALE family, encode homodomain-containing transcription factors remarkably conserved during evolution, which play a role in normal and neoplastic development. To gain understanding of the possible role of homeobox Meis genes in the developing chick inner ear, we comprehensively analyzed their spatiotemporal expression patterns from early otic specification stages onwards. In the invaginating otic placode, Meis1/2 transcripts were observed in the borders of the otic cup, being absent in the portion of otic epithelium closest to the hindbrain. As development proceeds, Meis1 and Meis2 expressions became restricted to the dorsomedial otic epithelium. Both genes were strongly expressed in the entire presumptive domain of the semicircular canals, and more weakly in all associated cristae. The endolymphatic apparatus was labeled in part by Meis1/2. Meis1 was also expressed in the lateral wall of the growing cochlear duct, while Meis2 expression was detected in a few cells of the developing acoustic-vestibular ganglion. Our results suggest a possible role of Meis assigning regional identity in the morphogenesis, patterning, and specification of the developing inner ear.


Asunto(s)
Oído Interno/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/biosíntesis , Proteínas de Neoplasias/biosíntesis , Animales , Tipificación del Cuerpo/fisiología , Embrión de Pollo , Expresión Génica , Perfilación de la Expresión Génica , Proteínas de Homeodominio/genética , Inmunohistoquímica , Hibridación in Situ , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Proteínas de Neoplasias/genética
19.
Dev Biol ; 335(1): 43-65, 2009 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-19699194

RESUMEN

We correlated available fate maps for the avian neural plate at stages HH4 and HH8 with the progress of local molecular specification, aiming to determine when the molecular specification maps of the primary longitudinal and transversal domains of the anterior forebrain agree with the fate mapped data. To this end, we examined selected gene expression patterns as they normally evolved in whole mounts and sections between HH4 and HH8 (or HH10/11 in some cases), performed novel fate-mapping experiments within the anterior forebrain at HH4 and examined the results at HH8, and correlated grafts with expression of selected gene markers. The data provided new details to the HH4 fate map, and disclosed some genes (e.g., Six3 and Ganf) whose expression domains initially are very extensive and subsequently retract rostralwards. Apart from anteroposterior dynamics, some genes soon became downregulated at the prospective forebrain floor plate, or allowed to identify an early roof plate domain (dorsoventral pattern). Peculiarities of the telencephalon (initial specification and differentiation of pallium versus subpallium) are contemplated. The basic anterior forebrain subdivisions seem to acquire correlated specification and fate mapping patterns around stage HH8.


Asunto(s)
Tipificación del Cuerpo/fisiología , Regulación del Desarrollo de la Expresión Génica , Placa Neural/citología , Prosencéfalo , Animales , Mapeo Encefálico , Trasplante de Tejido Encefálico , Linaje de la Célula , Embrión de Pollo , Hibridación in Situ , Datos de Secuencia Molecular , Prosencéfalo/anatomía & histología , Prosencéfalo/embriología , Prosencéfalo/fisiología
20.
J Comp Neurol ; 514(1): 49-65, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19260055

RESUMEN

Retinoic acid (RA), an active metabolite of vitamin A, is a diffusible molecule that regulates the expression of several families of genes, playing a key role in specification processes during chordate development. With the aim of defining its possible role in the developing chick inner ear, we obtained in this work a detailed spatiotemporal distribution of the enzymes involved in its synthesis, the retinaldehyde dehydrogenases (RALH1-4). Our results showed that, in contrast to the mouse inner ear, Raldh3 expression was the only Raldh gene detected in the developing chick inner ear, where it appears as early as stage 18. During inner ear morphogenesis, Raldh3 expression was predominantly observed in the endolymphatic system. The Raldh3 expression pattern delimited totally or partially the Bmp4-positive presumptive territories of vestibular sensory epithelia by stage 24 and the basilar papilla at stage 34, suggesting a possible involvement of RA in their specification. In addition, several vestibular sensory areas showed some Raldh3-expressing cells close to the Raldh3-positive domain. These results suggest that the RA signaling pathway may play a role in the initial patterning of the otic epithelium and cell differentiation therein, providing local positional information. Having in mind this Raldh3 expression pattern, we discuss the regulatory interactions among the RA, bone morphogenetic protein, and fibroblast growth factor signaling pathways in the specification of otic sensory elements. Our investigation may underpin further experimental studies aimed at understanding the possible role of signaling pathways in patterning of the developing chick inner ear.


Asunto(s)
Aldehído Oxidorreductasas/genética , Embrión de Pollo/metabolismo , Oído Interno/embriología , Oído Interno/metabolismo , Expresión Génica , Animales , Proteína Morfogenética Ósea 4/metabolismo , Epitelio/metabolismo , Inmunohistoquímica , Hibridación in Situ
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA