Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plant Genome ; 17(1): e20321, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36946358

RESUMEN

Coffee is a universal beverage that drives a multi-industry market on a global basis. Today, the sustainability of coffee production is threatened by accelerated climate changes. In this work, we propose the implementation of genomic-assisted breeding for climate-smart coffee in Coffea canephora. This species is adapted to higher temperatures and is more resilient to biotic and abiotic stresses. After evaluating two populations, over multiple harvests, and under severe drought weather condition, we dissected the genetic architecture of yield, disease resistance, and quality-related traits. By integrating genome-wide association studies and diallel analyses, our contribution is four-fold: (i) we identified a set of molecular markers with major effects associated with disease resistance and post-harvest traits, while yield and plant architecture presented a polygenic background; (ii) we demonstrated the relevance of nonadditive gene actions and projected hybrid vigor when genotypes from different geographically botanical groups are crossed; (iii) we computed medium-to-large heritability values for most of the traits, representing potential for fast genetic progress; and (iv) we provided a first step toward implementing molecular breeding to accelerate improvements in C. canephora. Altogether, this work is a blueprint for how quantitative genetics and genomics can assist coffee breeding and support the supply chain in the face of the current global changes.


Asunto(s)
Café , Estudio de Asociación del Genoma Completo , Resistencia a la Enfermedad , Fitomejoramiento , Genómica
2.
Hortic Res ; 10(11): uhad202, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38023484

RESUMEN

Domestication of cranberry and blueberry began in the United States in the early 1800s and 1900s, respectively, and in part owing to their flavors and health-promoting benefits are now cultivated and consumed worldwide. The industry continues to face a wide variety of production challenges (e.g. disease pressures), as well as a demand for higher-yielding cultivars with improved fruit quality characteristics. Unfortunately, molecular tools to help guide breeding efforts for these species have been relatively limited compared with those for other high-value crops. Here, we describe the construction and analysis of the first pangenome for both blueberry and cranberry. Our analysis of these pangenomes revealed both crops exhibit great genetic diversity, including the presence-absence variation of 48.4% genes in highbush blueberry and 47.0% genes in cranberry. Auxiliary genes, those not shared by all cultivars, are significantly enriched with molecular functions associated with disease resistance and the biosynthesis of specialized metabolites, including compounds previously associated with improving fruit quality traits. The discovery of thousands of genes, not present in the previous reference genomes for blueberry and cranberry, will serve as the basis of future research and as potential targets for future breeding efforts. The pangenome, as a multiple-sequence alignment, as well as individual annotated genomes, are publicly available for analysis on the Genome Database for Vaccinium-a curated and integrated web-based relational database. Lastly, the core-gene predictions from the pangenomes will serve useful to develop a community genotyping platform to guide future molecular breeding efforts across the family.

3.
bioRxiv ; 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37577683

RESUMEN

Domestication of cranberry and blueberry began in the United States in the early 1800s and 1900s, respectively, and in part owing to their flavors and health-promoting benefits are now cultivated and consumed worldwide. The industry continues to face a wide variety of production challenges (e.g. disease pressures) as well as a demand for higher-yielding cultivars with improved fruit quality characteristics. Unfortunately, molecular tools to help guide breeding efforts for these species have been relatively limited compared with those for other high-value crops. Here, we describe the construction and analysis of the first pangenome for both blueberry and cranberry. Our analysis of these pangenomes revealed both crops exhibit great genetic diversity, including the presence-absence variation of 48.4% genes in highbush blueberry and 47.0% genes in cranberry. Auxiliary genes, those not shared by all cultivars, are significantly enriched with molecular functions associated with disease resistance and the biosynthesis of specialized metabolites, including compounds previously associated with improving fruit quality traits. The discovery of thousands of genes, not present in the previous reference genomes for blueberry and cranberry, will serve as the basis of future research and as potential targets for future breeding efforts. The pangenome, as a multiple-sequence alignment, as well as individual annotated genomes, are publicly available for analysis on the Genome Database for Vaccinium - a curated and integrated web-based relational database. Lastly, the core-gene predictions from the pangenomes will serve useful to develop a community genotyping platform to guide future molecular breeding efforts across the family.

4.
Bioinformatics ; 39(7)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37471595

RESUMEN

MOTIVATION: The resemble between relatives computed from pedigree and genomic data is an important resource for geneticists and ecologists, who are interested in understanding how genes influence phenotypic variation, fitness adaptation, and population dynamics. RESULTS: The AGHmatrix software is an R package focused on the construction of pedigree (A matrix) and/or molecular markers (G matrix), with the possibility of building a combined matrix of pedigree corrected by molecular markers (H matrix). Designed to estimate the relationships for any ploidy level, the software also includes auxiliary functions related to filtering molecular markers, and checks pedigree errors in large data sets. After computing the relationship matrices, results from the AGHmatrix can be used in different contexts, including on prediction of (genomic) estimated breeding values and genome-wide association studies. AVAILABILITY AND IMPLEMENTATION: AGHmatrix v2.1.0 is available under GPL-3 license in CRAN at https://cran.r-project.org/web/packages/AGHmatrix/index.html and also in GitHub at https://github.com/rramadeu/AGHmatrix. It has a comprehensive tutorial, and it follows with real data examples.


Asunto(s)
Estudio de Asociación del Genoma Completo , Programas Informáticos , Genómica , Ploidias , Linaje
5.
Curr Opin Biotechnol ; 83: 102968, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37515935

RESUMEN

Over the last decades, significant strides were made in understanding the biochemical factors influencing the nutritional content and flavor profile of fruits and vegetables. Product differentiation in the produce aisle is the natural consequence of increasing consumer power in the food industry. Cotton-candy grapes, specialty tomatoes, and pineapple-flavored white strawberries provide a few examples. Given the increased demand for flavorful varieties, and pressing need to reduce micronutrient malnutrition, we expect breeding to increase its prioritization toward these traits. Reaching this goal will, in part, necessitate knowledge of the genetic architecture controlling these traits, as well as the development of breeding methods that maximize their genetic gain. Can artificial intelligence (AI) help predict flavor preferences, and can such insights be leveraged by breeding programs? In this Perspective, we outline both the opportunities and challenges for the development of more flavorful and nutritious crops, and how AI can support these breeding initiatives.


Asunto(s)
Inteligencia Artificial , Fitomejoramiento , Productos Agrícolas/genética , Fenotipo , Aprendizaje Automático
6.
G3 (Bethesda) ; 13(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36947440

RESUMEN

Coffee is one of the most important beverages and trade products in the world. Among the multiple research initiatives focused on coffee sustainability, plant breeding provides the best means to increase phenotypic performance and release cultivars that could meet market demands. Since coffee is well adapted to a diversity of tropical environments, an important question for those confronting the problem of evaluating phenotypic performance is the relevance of genotype-by-environment interaction. As a perennial crop with a long juvenile phase, coffee is subjected to significant temporal and spatial variations. Such facts not only hinder the selection of promising materials but also cause a majority of complaints among growers. In this study, we hypothesized that trait stability in coffee is genetically controlled and therefore is predictable using molecular information. To test it, we used genome-based methods to predict stability metrics computed with the primary goal of selecting coffee genotypes that combine high phenotypic performance and stability for target environments. Using 2 populations of Coffea canephora, evaluated across multiple years and locations, our contribution is 3-fold: (1) first, we demonstrated that the number of harvest evaluations may be reduced leading to accelerated implementation of molecular breeding; (2) we showed that stability metrics are predictable; and finally, (3) both stable and high-performance genotypes can be simultaneously predicted and selected. While this research was carried out on representative environments for coffee production with substantial crossover in genotypic ranking, we anticipate that genomic prediction can be an efficient tool to select coffee genotypes that combine high performance and stability across years and the target locations here evaluated.


Asunto(s)
Coffea , Coffea/genética , Café , Fitomejoramiento , Genotipo , Genómica/métodos
7.
Food Res Int ; 158: 111468, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35840196

RESUMEN

Flavor is among the most important traits valued by consumers of fresh fruits. Human perception of flavor occurs primarily through two main sensory inputs, taste and aroma. Through retronasal olfaction, volatile organic compounds (VOCs) emitted by the fruit are able to produce the sensation of aroma which when combined with gustatory inputs from the tongue together underly our perception of the thousands of flavors we experience throughout our lives. In blueberry, breeders have observed that some genotypes possess berries with unique 'floral' and 'sweet' flavor and aroma notes. The potential impact these characteristics might have on consumer acceptability is largely unknown and represents an opportunity to better understand how aroma attributes affect the perception of blueberry flavor. In this study, we dissected the main components of blueberry aroma and associated it with consumer predilections by pairing metabolomics with sensory analysis. Our contribution in this study is four-fold: (i) first, we differentiated genotypes with floral and sweet aroma notes and confirmed that such characteristics are preferred by consumers; (ii) at the chemical level, we showed that a group of eight terpenoid volatiles (p-cymene, myrtenal, linalool, L-carvenol, geranyl acetone, geranyl acetate, D-limonene and ß-myrcene) constitute the primary metabolic group associated with these aroma sensations; (iii) we demonstrated that aromatic genotypes can be classified using metabolomics; and finally, (iv) we combined pedigree and metabolomic information and showed the importance of metabolomic data for flavor-assisted selection. Our findings open new avenues to explore the phenomenon of flavor in blueberries and also allow us to present an emerging view about flavor and provide a detailed blueprint of how this targeted trait could be addressed in fruit and vegetable breeding.


Asunto(s)
Arándanos Azules (Planta) , Odorantes , Humanos , Odorantes/análisis , Fitomejoramiento , Gusto , Terpenos
8.
Hortic Res ; 9: uhac083, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35611183

RESUMEN

The genus Vaccinium L. (Ericaceae) contains a wide diversity of culturally and economically important berry crop species. Consumer demand and scientific research in blueberry (Vaccinium spp.) and cranberry (Vaccinium macrocarpon) have increased worldwide over the crops' relatively short domestication history (~100 years). Other species, including bilberry (Vaccinium myrtillus), lingonberry (Vaccinium vitis-idaea), and ohelo berry (Vaccinium reticulatum) are largely still harvested from the wild but with crop improvement efforts underway. Here, we present a review article on these Vaccinium berry crops on topics that span taxonomy to genetics and genomics to breeding. We highlight the accomplishments made thus far for each of these crops, along their journey from the wild, and propose research areas and questions that will require investments by the community over the coming decades to guide future crop improvement efforts. New tools and resources are needed to underpin the development of superior cultivars that are not only more resilient to various environmental stresses and higher yielding, but also produce fruit that continue to meet a variety of consumer preferences, including fruit quality and health related traits.

9.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35131943

RESUMEN

Although they are staple foods in cuisines globally, many commercial fruit varieties have become progressively less flavorful over time. Due to the cost and difficulty associated with flavor phenotyping, breeding programs have long been challenged in selecting for this complex trait. To address this issue, we leveraged targeted metabolomics of diverse tomato and blueberry accessions and their corresponding consumer panel ratings to create statistical and machine learning models that can predict sensory perceptions of fruit flavor. Using these models, a breeding program can assess flavor ratings for a large number of genotypes, previously limited by the low throughput of consumer sensory panels. The ability to predict consumer ratings of liking, sweet, sour, umami, and flavor intensity was evaluated by a 10-fold cross-validation, and the accuracies of 18 different models were assessed. The prediction accuracies were high for most attributes and ranged from 0.87 for sourness intensity in blueberry using XGBoost to 0.46 for overall liking in tomato using linear regression. Further, the best-performing models were used to infer the flavor compounds (sugars, acids, and volatiles) that contribute most to each flavor attribute. We found that the variance decomposition of overall liking score estimates that 42% and 56% of the variance was explained by volatile organic compounds in tomato and blueberry, respectively. We expect that these models will enable an earlier incorporation of flavor as breeding targets and encourage selection and release of more flavorful fruit varieties.


Asunto(s)
Arándanos Azules (Planta)/metabolismo , Frutas/química , Fitomejoramiento , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Arándanos Azules (Planta)/genética , Comportamiento del Consumidor , Regulación de la Expresión Génica de las Plantas/fisiología , Humanos , Solanum lycopersicum/genética , Aprendizaje Automático , Proteínas de Plantas/genética , Gusto , Compuestos Orgánicos Volátiles
10.
Front Plant Sci ; 12: 676326, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34194453

RESUMEN

Blueberry (Vaccinium corymbosum and hybrids) is a specialty crop with expanding production and consumption worldwide. The blueberry breeding program at the University of Florida (UF) has greatly contributed to expanding production areas by developing low-chilling cultivars better adapted to subtropical and Mediterranean climates of the globe. The breeding program has historically focused on recurrent phenotypic selection. As an autopolyploid, outcrossing, perennial, long juvenile phase crop, blueberry breeding cycles are costly and time consuming, which results in low genetic gains per unit of time. Motivated by applying molecular markers for a more accurate selection in the early stages of breeding, we performed pioneering genomic selection studies and optimization for its implementation in the blueberry breeding program. We have also addressed some complexities of sequence-based genotyping and model parametrization for an autopolyploid crop, providing empirical contributions that can be extended to other polyploid species. We herein revisited some of our previous genomic selection studies and showed for the first time its application in an independent validation set. In this paper, our contribution is three-fold: (i) summarize previous results on the relevance of model parametrizations, such as diploid or polyploid methods, and inclusion of dominance effects; (ii) assess the importance of sequence depth of coverage and genotype dosage calling steps; (iii) demonstrate the real impact of genomic selection on leveraging breeding decisions by using an independent validation set. Altogether, we propose a strategy for using genomic selection in blueberry, with the potential to be applied to other polyploid species of a similar background.

11.
Front Plant Sci ; 11: 562171, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33304360

RESUMEN

Blueberry (Vaccinium corymbosum and hybrids) is an autotetraploid crop whose commercial relevance has been growing steadily during the last 20 years. However, the ever-increasing cost of labor for hand-picking blueberry is one main constraint in competitive marketing of the fruit. Machine harvestability is, therefore, a key trait for the blueberry industry. Understanding the genetic architecture of traits related to machine harvestability through Quantitative Trait Loci (QTL) mapping is the first step toward implementation of molecular breeding for faster genetic gains. Despite recent advances in software development for autotetraploid genetic mapping, a high-resolution map is still not available for blueberry. In this study, we crafted a map for autotetraploid low-chill highbush blueberry containing 11,292 SNP markers and a total size of 1,953.97 cM (average density of 5.78 markers/cM). This map was subsequently used to perform QTL analyses in 2-year field trials for a trait crucial to machine harvesting: fruit firmness. Preliminary insights were also sought for single evaluations of firmness retention after cold storage, and fruit detachment force traits. Significant QTL peaks were identified for all the traits and overlapping QTL intervals were detected for firmness across the years. We found low-to-moderate QTL effects explaining the phenotypic variance, which suggest a quantitative nature of these traits. The QTL intervals were further speculated for putative gene repertoire. Altogether, our findings provide the basis for future fine-mapping and molecular breeding efforts for machine harvesting in blueberry.

12.
Front Plant Sci ; 11: 25, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117371

RESUMEN

Genomic prediction (GP) is the procedure whereby the genetic merits of untested candidates are predicted using genome wide marker information. Although numerous examples of GP exist in plants and animals, applications to polyploid organisms are still scarce, partly due to limited genome resources and the complexity of this system. Deep learning (DL) techniques comprise a heterogeneous collection of machine learning algorithms that have excelled at many prediction tasks. A potential advantage of DL for GP over standard linear model methods is that DL can potentially take into account all genetic interactions, including dominance and epistasis, which are expected to be of special relevance in most polyploids. In this study, we evaluated the predictive accuracy of linear and DL techniques in two important small fruits or berries: strawberry and blueberry. The two datasets contained a total of 1,358 allopolyploid strawberry (2n=8x=112) and 1,802 autopolyploid blueberry (2n=4x=48) individuals, genotyped for 9,908 and 73,045 single nucleotide polymorphism (SNP) markers, respectively, and phenotyped for five agronomic traits each. DL depends on numerous parameters that influence performance and optimizing hyperparameter values can be a critical step. Here we show that interactions between hyperparameter combinations should be expected and that the number of convolutional filters and regularization in the first layers can have an important effect on model performance. In terms of genomic prediction, we did not find an advantage of DL over linear model methods, except when the epistasis component was important. Linear Bayesian models were better than convolutional neural networks for the full additive architecture, whereas the opposite was observed under strong epistasis. However, by using a parameterization capable of taking into account these non-linear effects, Bayesian linear models can match or exceed the predictive accuracy of DL. A semiautomatic implementation of the DL pipeline is available at https://github.com/lauzingaretti/deepGP/.

13.
New Phytol ; 226(6): 1725-1737, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31999829

RESUMEN

Plants produce a range of volatile organic compounds (VOCs), some of which are perceived by the human olfactory system, contributing to a myriad flavors. Despite the importance of flavor for consumer preference, most plant breeding programs have neglected it, mainly because of the costs of phenotyping and the complexity of disentangling the role of VOCs in human perception. To develop molecular breeding tools aimed at improving fruit flavor, we carried out target genotyping of and VOC extraction from a blueberry population. Metabolite genome-wide association analysis was used to elucidate the genetic architecture, while predictive models were tested to prove that VOCs can be accurately predicted using genomic information. A historical sensory panel was considered to assess how the volatiles influenced consumers. By gathering genomics, metabolomics, and the sensory panel, we demonstrated that VOCs are controlled by a few major genomic regions, some of which harbor biosynthetic enzyme-coding genes; can be accurately predicted using molecular markers; and can enhance or decrease consumers' overall liking. Here we emphasized how the understanding of the genetic basis and the role of VOCs in consumer preference can assist breeders in developing more flavorful cultivars at a more inexpensive and accelerated pace.


Asunto(s)
Arándanos Azules (Planta) , Compuestos Orgánicos Volátiles , Arándanos Azules (Planta)/genética , Frutas/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Gusto/genética
14.
Sci Rep ; 9(1): 20037, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882573

RESUMEN

Herbicide resistance is a recurrent evolutionary event that has been reported across many species and for all major herbicide modes of action. The synthetic auxinic herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) has been widely used since the 1940s, however the genetic variation underlying naturally evolving resistance remains largely unknown. In this study, we used populations of the forage legume crop red clover (Trifolium pratense L.) that were recurrently selected for 2,4-D resistance to detect genome-wide signatures of adaptation. Four susceptible and six derived resistant populations were sequenced using a less costly approach by combining targeted sequencing (Capture-Seq) with pooled individuals (Pool-Seq). Genomic signatures of selection were identified using: (i) pairwise allele frequency differences; (ii) genome scan for overly differentiated loci; and (iii) genome-wide association. Fifty significant SNPs were consistently detected, most located in a single chromosome, which can be useful for marker assisted selection. Additionally, we searched for candidate genes at these genomic regions to gain insights into potential molecular mechanisms underlying 2,4-D resistance. Among the predicted functions of candidate genes, we found some related to the auxin metabolism, response to oxidative stress, and detoxification, which are also promising for further functional validation studies.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético/toxicidad , Adaptación Fisiológica , Análisis Costo-Beneficio , Genoma de Planta , Resistencia a los Herbicidas/genética , Medicago/genética , Estudio de Asociación del Genoma Completo , Medicago/efectos de los fármacos , Medicago/fisiología
15.
Gigascience ; 8(6)2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31184361

RESUMEN

The decreasing costs of next-generation sequencing and the improvements in de novo sequence assemblers have made it possible to obtain reference genomes for most eukaryotes, including minor crops such as the blueberry (Vaccinium corymbosum). Nevertheless, these genomes are at various levels of completeness and few have been anchored to chromosome scale and/or are haplotype-phased. We highlight the impact of a high-quality genome assembly for plant breeding and genetic research by showing how it affects our understanding of the genetic architecture of important traits and aids marker selection and candidate gene detection. We compared the results of genome-wide association studies and genomic selection that were already published using a blueberry draft genome as reference with the results using the recent released chromosome-scale and haplotype-phased blueberry genome. We believe that the benefits shown herein reinforce the importance of genome assembly projects for other non-model species.


Asunto(s)
Arándanos Azules (Planta)/genética , Genoma de Planta , Estudio de Asociación del Genoma Completo/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Genómica/métodos , Fitomejoramiento/métodos
16.
G3 (Bethesda) ; 9(4): 1189-1198, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30782769

RESUMEN

Estimation of allele dosage, using genomic data, in autopolyploids is challenging and current methods often result in the misclassification of genotypes. Some progress has been made when using SNP arrays, but the major challenge is when using next generation sequencing data. Here we compare the use of read depth as continuous parameterization with ploidy parameterizations in the context of genomic selection (GS). Additionally, different sources of information to build relationship matrices were compared. A real breeding population of the autotetraploid species blueberry (Vaccinium corybosum), composed of 1,847 individuals was phenotyped for eight yield and fruit quality traits over two years. Continuous genotypic based models performed as well as the best models. This approach also reduces the computational time and avoids problems associated with misclassification of genotypic classes when assigning dosage in polyploid species. This approach could be very valuable for species with higher ploidy levels or for emerging crops where ploidy is not well understood. To our knowledge, this work constitutes the first study of genomic selection in blueberry. Accuracies are encouraging for application of GS for blueberry breeding. GS could reduce the time for cultivar release by three years, increasing the genetic gain per cycle by 86% on average when compared to phenotypic selection, and 32% when compared with pedigree-based selection. Finally, the genotypic and phenotypic data used in this study are made available for comparative analysis of dosage calling and genomic selection prediction models in the context of autopolyploids.


Asunto(s)
Arándanos Azules (Planta)/genética , Selección Genética , Tetraploidía , Cruzamiento , Dosificación de Gen , Estudios de Asociación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA