Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 1762, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30741962

RESUMEN

A newly discovered cold seep from the Lofoten-Vesterålen margin (Norwegian Sea) is dominated by the chemosymbiotrophic siboglinid Oligobrachia haakonmosbiensis like other high latitude seeps, but additionally displays uncharacteristic features. Sulphidic bottom water likely prevents colonization by cnidarians and sponges, resulting in fewer taxa than deeper seeps in the region, representing a deviation from depth-related trends seen among seeps elsewhere. O. haakonmosbiensis was present among carbonate and barite crusts, constituting the first record of frenulates among hard substrates. The presence of both adults and egg cases indicate that Ambylraja hyperborea skates use the site as an egg case nursery ground. Due to sub-zero ambient temperatures (-0.7 °C), we hypothesize that small, seepage related heat anomalies aid egg incubation and prevent embryo mortality. We place our results within the context of high-latitude seeps and suggest they exert evolutionary pressure on benthic species, thereby selecting for elevated exploitation and occupancy of high-productivity habitats.

2.
Environ Sci Technol ; 52(18): 10543-10551, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30111096

RESUMEN

We present a novel instrument, the Sub-Ocean probe, allowing in situ and continuous measurements of dissolved methane in seawater. It relies on an optical feedback cavity enhanced absorption technique designed for trace gas measurements and coupled to a patent-pending sample extraction method. The considerable advantage of the instrument compared with existing ones lies in its fast response time of the order of 30 s, that makes this probe ideal for fast and continuous 3D-mapping of dissolved methane in water. It could work up to 40 MPa of external pressure, and it provides a large dynamic range, from subnmol of CH4 per liter of seawater to mmol L-1. In this work, we present laboratory calibration of the instrument, intercomparison with standard method and field results on methane detection. The good agreement with the headspace equilibration technique followed by gas-chromatography analysis supports the utility and accuracy of the instrument. A continuous 620-m depth vertical profile in the Mediterranean Sea was obtained within only 10 min, and it indicates background dissolved CH4 values between 1 and 2 nmol L-1 below the pycnocline, similar to previous observations conducted in different ocean settings. It also reveals a methane maximum at around 6 m of depth, that may reflect local production from bacterial transformation of dissolved organic matter.


Asunto(s)
Metano , Agua de Mar , Rayos Láser , Mar Mediterráneo , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...