Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 16(4)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38675209

RESUMEN

Small RNA molecules such as microRNA and small interfering RNA (siRNA) have become promising therapeutic agents because of their specificity and their potential to modulate gene expression. Any gene of interest can be potentially up- or down-regulated, making RNA-based technology the healthcare breakthrough of our era. However, the functional and specific delivery of siRNAs into tissues of interest and into the cytosol of target cells remains highly challenging, mainly due to the lack of efficient and selective delivery systems. Among the variety of carriers for siRNA delivery, peptides have become essential candidates because of their high selectivity, stability, and conjugation versatility. Here, we describe the development of molecules encompassing siRNAs against SOD1, conjugated to peptides that target the low-density lipoprotein receptor (LDLR), and their biological evaluation both in vitro and in vivo.

2.
J Med Chem ; 66(13): 8844-8857, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37339060

RESUMEN

Here we report the coupling of a cyclic peptide (VH4127) targeting the low density lipoprotein (LDL) receptor (LDLR) noncompetitively to cucurbit[7]uril (CB[7]) to develop a new kind of drug delivery system (DDS), namely, CB[7]-VH4127, with maintained binding affinity to the LDLR. To evaluate the uptake potential of this bismacrocyclic compound, another conjugate was prepared comprising a high-affinity group for CB[7] (adamantyl(Ada)-amine) coupled to the fluorescent tracker Alexa680 (A680). The resulting A680-Ada·CB[7]-VH4127 supramolecular complex demonstrated conserved LDLR-binding potential and improved LDLR-mediated endocytosis and intracellular accumulation potential in LDLR-expressing cells. The combination of two technologies, namely, monofunctionalized CB[7] and the VH4127 LDLR-targeting peptide, opens new avenues in terms of targeting and intracellular delivery to LDLR-expressing tissues or tumors. The versatile transport capacity of CB[7], known to bind a large spectrum of bioactive or functional compounds, makes this new DDS suitable for a wide range of therapeutic or imaging applications.


Asunto(s)
Compuestos Macrocíclicos , Péptidos , Hidrocarburos Aromáticos con Puentes/farmacología , Sistemas de Liberación de Medicamentos , Péptidos/química , Receptores de LDL/metabolismo
3.
Int J Biol Macromol ; 223(Pt A): 1223-1229, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36375666

RESUMEN

Tau is a naturally disordered microtubule associated protein which forms intraneuronal aggregates in several neurodegenerative diseases including Alzheimer's disease (AD). It was reported that zinc interaction with tau protein can trigger its aggregation. Recently we identified three zinc binding sites located in the N-terminal part, repeat region and the C-terminal part of tau. Here we characterized zinc binding to each of the three sites using isothermal titration calorimetry (ITC) and determined the impact of each site on aggregation using dynamic light scattering (DLS) assays. First, we confirmed the presence of three zinc binding sites on tau and determined the thermodynamic parameters of binding of zinc to these sites. We found a high-affinity zinc binding site located in the repeat region of tau and two N- and C-terminus binding sites with a lower binding constant for zinc. Second, we showed that tau aggregation necessitates zinc binding to the high affinity site in the R2R3 region, while LLPS necessitates zinc binding to any two binding sites. With regard to the role of zinc ions in the aggregation of proteins in neurodegenerative diseases, these findings bring new insights to the understanding of the aggregation mechanism of tau protein induced by zinc.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Proteínas tau/química , Zinc/farmacología , Enfermedad de Alzheimer/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Sitios de Unión , Iones
4.
Cell Mol Life Sci ; 79(9): 496, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36006520

RESUMEN

Botulinum neurotoxin serotype B (BoNT/B) uses two separate protein and polysialoglycolipid-binding pockets to interact with synaptotagmin 1/2 and gangliosides. However, an integrated model of BoNT/B bound to its neuronal receptors in a native membrane topology is still lacking. Using a panel of in silico and experimental approaches, we present here a new model for BoNT/B binding to neuronal membranes, in which the toxin binds to a preassembled synaptotagmin-ganglioside GT1b complex and a free ganglioside allowing a lipid-binding loop of BoNT/B to interact with the glycone part of the synaptotagmin-associated GT1b. Furthermore, our data provide molecular support for the decrease in BoNT/B sensitivity in Felidae that harbor the natural variant synaptotagmin2-N59Q. These results reveal multiple interactions of BoNT/B with gangliosides and support a novel paradigm in which a toxin recognizes a protein/ganglioside complex.


Asunto(s)
Gangliósidos , Sinaptotagmina II , Sitios de Unión , Gangliósidos/química , Gangliósidos/metabolismo , Neuronas/metabolismo , Unión Proteica , Sinaptotagmina II/química , Sinaptotagmina II/genética , Sinaptotagmina II/metabolismo , Sinaptotagminas/genética , Sinaptotagminas/metabolismo
5.
Proc Natl Acad Sci U S A ; 116(36): 18098-18108, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31431523

RESUMEN

Botulinum neurotoxin type B (BoNT/B) recognizes nerve terminals by binding to 2 receptor components: a polysialoganglioside, predominantly GT1b, and synaptotagmin 1/2. It is widely thought that BoNT/B initially binds to GT1b then diffuses in the plane of the membrane to interact with synaptotagmin. We have addressed the hypothesis that a GT1b-synaptotagmin cis complex forms the BoNT/B receptor. We identified a consensus glycosphingolipid-binding motif in the extracellular juxtamembrane domain of synaptotagmins 1/2 and confirmed by Langmuir monolayer, surface plasmon resonance, and circular dichroism that GT1b interacts with synaptotagmin peptides containing this sequence, inducing α-helical structure. Molecular modeling and tryptophan fluorescence spectroscopy were consistent with the intertwining of GT1b and synaptotagmin, involving cis interactions between the oligosaccharide and ceramide moieties of GT1b and the juxtamembrane and transmembrane domains of synaptotagmin, respectively. Furthermore, a point mutation on synaptotagmin, located outside of the BoNT/B-binding segment, inhibited GT1b binding and blocked GT1b-induced potentiation of BoNT/B binding to synaptotagmin-expressing cells. Our findings are consistent with a model in which a preassembled GT1b-synaptotagmin complex constitutes the high-affinity BoNT/B receptor.


Asunto(s)
Toxinas Botulínicas Tipo A , Gangliósidos , Sinaptotagmina I , Animales , Sitios de Unión , Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/metabolismo , Gangliósidos/química , Gangliósidos/farmacología , Conformación Proteica en Hélice alfa , Dominios Proteicos , Ratas , Sinaptotagmina I/química , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo , Sinaptotagmina II/química , Sinaptotagmina II/genética , Sinaptotagmina II/metabolismo
6.
Future Med Chem ; 10(23): 2695-2711, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30520324

RESUMEN

Aim: E-selectin is overexpressed on angiogenic and inflamed endothelium. Molecules binding to E-selectin with high affinity and specificity enable its use as a molecular imaging biomarker. Material & methods: The interactions of four different peptides (i.e., Ac-P1 [Acetyl-IELLQAR-CONH2], H2N-P2 [H2N-DITWDQLWDLMK-CONH2], H2N-P3A5 [H2N-YRNWAGRW-CONH2], and Ac-P4 [Acetyl-YRNWDGRW-CONH2]) with E-selectin were analyzed by computational methodologies, surface plasmon resonance and in vitro using activated human umbilical vein endothelial cells. Poly(butyl cyanoacrylate) microbubbles were functionalized with the best candidates and evaluated as molecular ultrasound probes in cultured cells and explanted carotid arteries. Results: H2N-P3A5 and Ac-P4 peptides bound stronger to E-selectin than Ac-P1 and H2N-P2, but with lower specificity. H2N-P2 bound with higher specificity and affinity than Ac-P1. Conclusion: H2N-P2 is a good candidate for designing E-selectin-targeted molecular imaging agents.

7.
PLoS One ; 13(2): e0191052, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29485998

RESUMEN

Insufficient membrane penetration of drugs, in particular biotherapeutics and/or low target specificity remain a major drawback in their efficacy. We propose here the rational characterization and optimization of peptides to be developed as vectors that target cells expressing specific receptors involved in endocytosis or transcytosis. Among receptors involved in receptor-mediated transport is the LDL receptor. Screening complex phage-displayed peptide libraries on the human LDLR (hLDLR) stably expressed in cell lines led to the characterization of a family of cyclic and linear peptides that specifically bind the hLDLR. The VH411 lead cyclic peptide allowed endocytosis of payloads such as the S-Tag peptide or antibodies into cells expressing the hLDLR. Size reduction and chemical optimization of this lead peptide-vector led to improved receptor affinity. The optimized peptide-vectors were successfully conjugated to cargos of different nature and size including small organic molecules, siRNAs, peptides or a protein moiety such as an Fc fragment. We show that in all cases, the peptide-vectors retain their binding affinity to the hLDLR and potential for endocytosis. Following i.v. administration in wild type or ldlr-/- mice, an Fc fragment chemically conjugated or fused in C-terminal to peptide-vectors showed significant biodistribution in LDLR-enriched organs. We have thus developed highly versatile peptide-vectors endowed with good affinity for the LDLR as a target receptor. These peptide-vectors have the potential to be further developed for efficient transport of therapeutic or imaging agents into cells -including pathological cells-or organs that express the LDLR.


Asunto(s)
Péptidos/metabolismo , Receptores de LDL/metabolismo , Secuencia de Aminoácidos , Animales , Sistemas de Liberación de Medicamentos , Endocitosis , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Biblioteca de Péptidos , Péptidos/química , Péptidos/genética , Unión Proteica , Ingeniería de Proteínas , Ratas , Receptores de LDL/deficiencia , Receptores de LDL/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
8.
EMBO J ; 37(8)2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29459435

RESUMEN

Cholesterol is a major lipid component of the mammalian plasma membrane. While much is known about its metabolism, its transport, and its role in atherosclerotic vascular disease, less is known about its role in neuronal pathophysiology. This study reveals an unexpected function of cholesterol in controlling pain transmission. We show that inflammation lowers cholesterol content in skin tissue and sensory DRG culture. Pharmacological depletion of cellular cholesterol entails sensitization of nociceptive neurons and promotes mechanical and thermal hyperalgesia through the activation of voltage-gated Nav1.9 channels. Inflammatory mediators enhance the production of reactive oxygen species and induce partitioning of Nav1.9 channels from cholesterol-rich lipid rafts to cholesterol-poor non-raft regions of the membrane. Low-cholesterol environment enhances voltage-dependent activation of Nav1.9 channels leading to enhanced neuronal excitability, whereas cholesterol replenishment reversed these effects. Consistently, we show that transcutaneous delivery of cholesterol alleviates hypersensitivity in animal models of acute and chronic inflammatory pain. In conclusion, our data establish that membrane cholesterol is a modulator of pain transmission and shed a new light on the relationship between cholesterol homeostasis, inflammation, and pain.


Asunto(s)
Membrana Celular/fisiología , Colesterol/fisiología , Inflamación/fisiopatología , Canal de Sodio Activado por Voltaje NAV1.9/fisiología , Dolor/fisiopatología , Animales , Ganglios Espinales/fisiología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Nociceptores/fisiología
9.
Sci Rep ; 7(1): 5375, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28710453

RESUMEN

The tissue inhibitor of metalloproteinases-1 (TIMP-1) exerts inhibitory activity against matrix metalloproteinases and cytokine-like effects. We previously showed that TIMP-1 reduces neurite outgrowth in mouse cortical neurons and that this cytokine-like effect depends on TIMP-1 endocytosis mediated by the low-density lipoprotein receptor-related protein-1 (LRP-1). To gain insight into the interaction between TIMP-1 and LRP-1, we considered conformational changes that occur when a ligand binds to its receptor. TIMP-1 conformational changes have been studied using biomolecular simulations, and our results provide evidence for a hinge region that is critical for the protein movement between the N- and C-terminal TIMP-1 domains. In silico mutants have been proposed on residues F12 and K47, which are located in the hinge region. Biological analyses of these mutants show that F12A or K47A mutation does not alter MMP inhibitory activity but impairs the effect of TIMP-1 on neurite outgrowth. Interestingly, these mutants bind to LRP-1 but are not endocytosed. We conclude that the intrinsic dynamics of TIMP-1 are not involved in its binding to LRP-1 but rather in the initiation of endocytosis and associated biological effects.


Asunto(s)
Aminoácidos/metabolismo , Endocitosis , Neuronas/metabolismo , Receptores de LDL/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Aminoácidos/genética , Animales , Células Cultivadas , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Ratones , Simulación de Dinámica Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformación Proteica , Mapeo de Interacción de Proteínas , Inhibidor Tisular de Metaloproteinasa-1/genética
10.
Sci Rep ; 7(1): 1032, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28432329

RESUMEN

The development of simple molecular assays with membrane protein receptors in a native conformation still represents a challenging task. Exosomes are extracellular vesicles which, due to their stability and small size, are suited for analysis in various assay formats. Here, we describe a novel approach to sort recombinant fully native and functional membrane proteins to exosomes using a targeting peptide. Specific binding of high affinity ligands to the potassium channel Kv1.2, the G-protein coupled receptor CXCR4, and the botulinum neurotoxin type B (BoNT/B) receptor, indicated their correct assembly and outside out orientation in exosomes. We then developed, using a label-free optical biosensor, a new method to determine the kinetic constants of BoNT/B holotoxin binding to its receptor synaptotagmin2/GT1b ganglioside (kon = 2.3 ×105 M-1.s-1, koff = 1.3 10-4 s-1), yielding an affinity constant (KD = 0.6 nM) similar to values determined from native tissue. In addition, the recombinant binding domain of BoNT/B, a potential vector for neuronal delivery, bound quasi-irreversibly to synaptotagmin 2/GT1b exosomes. Engineered exosomes provide thus a novel means to study membrane proteins for biotechnology and clinical applications.


Asunto(s)
Técnicas Biosensibles/métodos , Exosomas/metabolismo , Proteínas de la Membrana/metabolismo , Toxinas Botulínicas Tipo A/metabolismo , Canal de Potasio Kv.1.2/metabolismo , Proteínas de la Membrana/química , Conformación Proteica , Ingeniería de Proteínas , Receptores CXCR4/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Sinaptotagmina II/metabolismo
11.
Mol Pharm ; 13(12): 4094-4105, 2016 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-27656777

RESUMEN

Active targeting and delivery to pathophysiological organs of interest is of paramount importance to increase specific accumulation of therapeutic drugs or imaging agents while avoiding systemic side effects. We recently developed a family of new peptide ligands of the human and rodent LDL receptor (LDLR), an attractive cell-surface receptor with high uptake activity and local enrichment in several normal or pathological tissues (Malcor et al., J. Med. Chem. 2012, 55 (5), 2227). Initial chemical optimization of the 15-mer, all natural amino acid compound 1/VH411 (DSGL[CMPRLRGC]cDPR) and structure-activity relationship (SAR) investigation led to the cyclic 8 amino acid analogue compound 22/VH445 ([cMPRLRGC]c) which specifically binds hLDLR with a KD of 76 nM and has an in vitro blood half-life of ∼3 h. Further introduction of non-natural amino acids led to the identification of compound 60/VH4106 ([(d)-"Pen"M"Thz"RLRGC]c), which showed the highest KD value of 9 nM. However, this latter analogue displayed the lowest in vitro blood half-life (∼1.9 h). In the present study, we designed a new set of peptide analogues, namely, VH4127 to VH4131, with further improved biological properties. Detailed analysis of the hLDLR-binding kinetics of previous and new analogues showed that the latter all displayed very high on-rates, in the 106 s-1.M-1 range, and off-rates varying from the low 10-2 s-1 to the 10-1 s-1 range. Furthermore, all these new analogues showed increased blood half-lives in vitro, reaching ∼7 and 10 h for VH4129 and VH4131, respectively. Interestingly, we demonstrate in cell-based assays using both VH445 and the most balanced optimized analogue VH4127 ([cM"Thz"RLRG"Pen"]c), showing a KD of 18 nM and a blood half-life of ∼4.3 h, that its higher on-rate correlated with a significant increase in both the extent of cell-surface binding to hLDLR and the endocytosis potential. Finally, intravenous injection of tritium-radiolabeled 3H-VH4127 in wild-type or ldlr -/- mice confirmed their active LDLR targeting in vivo. Overall, this study extends our previous work toward a diversified portfolio of LDLR-targeted peptide vectors with validated LDLR-targeting potential in vivo.


Asunto(s)
Vectores Genéticos/normas , Fragmentos de Péptidos/farmacología , Receptores de LDL/antagonistas & inhibidores , Animales , Células CHO , Cricetulus , Sistemas de Liberación de Medicamentos , Endocitosis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fragmentos de Péptidos/farmacocinética , Receptores de LDL/fisiología , Relación Estructura-Actividad , Distribución Tisular
12.
Sci Rep ; 5: 17953, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26648139

RESUMEN

The enzymatic activity of the pathogenic botulinum neurotoxins type A and E (BoNT/A and E) leads to potentially lethal paralytic symptoms in humans and their prompt detection is of crucial importance. A chip assay based on Surface Plasmon Resonance monitoring of the cleavage products is a simple method that we have previously established to detect BoNT/A activity. We have now developed a similar format assay to measure BoNT/E activity. A monoclonal antibody specifically recognizing SNAP25 cleaved by BoNT/E was generated and used to measure the appearance of the neo-epitope following injection of BoNT/E over SNAP-25 immobilized on a chip. This assay detects BoNT/E activity at 1 LD50/ml within minutes and linear dose-responses curves were obtained using a multiplexed biosensor. A threshold of 0.01 LD50/ml was achieved after 5 h of cleavage. This assay is 10-fold more sensitive than the in vivo assay for direct detection of BoNT/E in serum samples. The SNAP25 chip assay is able to discriminate in an automated manner the presence of BoNT/E, BoNT/A or a combination of both toxins.


Asunto(s)
Técnicas Biosensibles , Toxinas Botulínicas Tipo A , Toxinas Botulínicas , Anticuerpos Monoclonales/inmunología , Toxinas Botulínicas/inmunología , Toxinas Botulínicas Tipo A/inmunología , Activación Enzimática , Epítopos/inmunología , Humanos , Cinética , Dispositivos Laboratorio en un Chip , Procedimientos Analíticos en Microchip , Sensibilidad y Especificidad , Especificidad por Sustrato
13.
J Neurochem ; 134(3): 527-37, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25950943

RESUMEN

The axon initial segment (AIS) plays a central role in electrogenesis and in the maintenance of neuronal polarity. Its molecular organization is dependent on the scaffolding protein ankyrin (Ank) G and is regulated by kinases. For example, the phosphorylation of voltage-gated sodium channels by the protein kinase CK2 regulates their interaction with AnkG and, consequently, their accumulation at the AIS. We previously showed that IQ motif containing J-Schwannomin-Interacting Protein 1 (IQCJ-SCHIP-1), an isoform of the SCHIP-1, accumulated at the AIS in vivo. Here, we analyzed the molecular mechanisms involved in IQCJ-SCHIP-1-specific axonal location. We showed that IQCJ-SCHIP-1 accumulation in the AIS of cultured hippocampal neurons depended on AnkG expression. Pull-down assays and surface plasmon resonance analysis demonstrated that AnkG binds to CK2-phosphorylated IQCJ-SCHIP-1 but not to the non-phosphorylated protein. Surface plasmon resonance approaches using IQCJ-SCHIP-1, SCHIP-1a, another SCHIP-1 isoform, and their C-terminus tail mutants revealed that a segment including multiple CK2-phosphorylatable sites was directly involved in the interaction with AnkG. Pharmacological inhibition of CK2 diminished both IQCJ-SCHIP-1 and AnkG accumulation in the AIS. Silencing SCHIP-1 expression reduced AnkG cluster at the AIS. Finally, over-expression of IQCJ-SCHIP-1 decreased AnkG concentration at the AIS, whereas a mutant deleted of the CK2-regulated AnkG interaction site did not. Our study reveals that CK2-regulated IQJC-SCHIP-1 association with AnkG contributes to AIS maintenance. The axon initial segment (AIS) organization depends on ankyrin (Ank) G and kinases. Here we showed that AnkG binds to CK2-phosphorylated IQCJ-SCHIP-1, in a segment including 12 CK2-phosphorylatable sites. In cultured neurons, either pharmacological inhibition of CK2 or IQCJ-SCHIP-1 silencing reduced AnkG clustering. Overexpressed IQCJ-SCHIP-1 decreased AnkG concentration at the AIS whereas a mutant deleted of the CK2-regulated AnkG interaction site did not. Thus, CK2-regulated IQJC-SCHIP-1 association with AnkG contributes to AIS maintenance.


Asunto(s)
Ancirinas/metabolismo , Axones/metabolismo , Proteínas Portadoras/metabolismo , Quinasa de la Caseína II/metabolismo , Animales , Western Blotting , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Hipocampo/metabolismo , Ratones , Microscopía Confocal , Datos de Secuencia Molecular , Ratas , Ratas Wistar , Resonancia por Plasmón de Superficie , Transfección
14.
Appl Microbiol Biotechnol ; 99(10): 4355-60, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25672850

RESUMEN

The production of botulinum neurotoxin A (BoNT/A) for therapeutic and cosmetic applications requires precise determination of batch potency, and the enzymatic activity of BoNT/A light chain is a crucial index that can be measured in vitro. We previously established a SNAP-25 chip-based assay using surface plasmon resonance (SPR) that is more sensitive than the standard mouse bioassay for the quantification of BoNT/A activity. We have now adapted this procedure for pharmaceutical preparations. The optimized SPR assay allowed multiple measurements on a single chip, including the kinetics of substrate cleavage. The activity of five different batches of a pharmaceutical BoNT/A preparation was determined in a blind study by SPR and found to be in agreement with data from the in vivo mouse lethality assay. Biosensor detection of specific proteolytic products has the potential to accurately monitor the activity of pharmaceutical BoNT/A preparations, and a single chip can be used to assay more than 100 samples.


Asunto(s)
Técnicas Biosensibles/métodos , Toxinas Botulínicas Tipo A/análisis , Resonancia por Plasmón de Superficie/métodos , Animales , Técnicas Biosensibles/instrumentación , Toxinas Botulínicas Tipo A/toxicidad , Ratones , Resonancia por Plasmón de Superficie/instrumentación
15.
J Gen Physiol ; 145(2): 155-62, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25624450

RESUMEN

Animal toxins that inhibit voltage-gated sodium (Na(v)) channel fast inactivation can do so through an interaction with the S3b-S4 helix-turn-helix region, or paddle motif, located in the domain IV voltage sensor. Here, we used surface plasmon resonance (SPR), an optical approach that uses polarized light to measure the refractive index near a sensor surface to which a molecule of interest is attached, to analyze interactions between the isolated domain IV paddle and Na(v) channel-selective α-scorpion toxins. Our SPR analyses showed that the domain IV paddle can be removed from the Na(v) channel and immobilized on sensor chips, and suggest that the isolated motif remains susceptible to animal toxins that target the domain IV voltage sensor. As such, our results uncover the inherent pharmacological sensitivities of the isolated domain IV paddle motif, which may be exploited to develop a label-free SPR approach for discovering ligands that target this region.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.2/química , Venenos de Escorpión/química , Bloqueadores de los Canales de Sodio/química , Resonancia por Plasmón de Superficie/métodos , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Datos de Secuencia Molecular , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Unión Proteica , Ratas , Venenos de Escorpión/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Xenopus
16.
PLoS One ; 9(11): e111836, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25369125

RESUMEN

Human Galectin-3 is found in the nucleus, the cytoplasm and at the cell surface. This lectin is constituted of two domains: an unfolded N-terminal domain and a C-terminal Carbohydrate Recognition Domain (CRD). There are still uncertainties about the relationship between the quaternary structure of Galectin-3 and its carbohydrate binding properties. Two types of self-association have been described for this lectin: a C-type self-association and a N-type self-association. Herein, we have analyzed Galectin-3 oligomerization by Dynamic Light Scattering using both the recombinant CRD and the full length lectin. Our results proved that LNnT induces N-type self-association of full length Galectin-3. Moreover, from Nuclear Magnetic Resonance (NMR) and Surface Plasmon Resonance experiments, we observed no significant specificity or affinity variations for carbohydrates related to the presence of the N-terminal domain of Galectin-3. NMR mapping clearly established that the N-terminal domain interacts with the CRD. We propose that LNnT induces a release of the N-terminal domain resulting in the glycan-dependent self-association of Galectin-3 through N-terminal domain interactions.


Asunto(s)
Galectina 3/química , Proteínas Sanguíneas , Galectinas , Glicosilación , Humanos , Lactosa/química , Modelos Moleculares , Oligosacáridos/química , Unión Proteica , Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Estructura Cuaternaria de Proteína
17.
PLoS One ; 9(7): e103839, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25075518

RESUMEN

Tissue inhibitor of metalloproteinases-1 (TIMP-1) regulates the extracellular matrix turnover by inhibiting the proteolytic activity of matrix metalloproteinases (MMPs). TIMP-1 also displays MMP-independent activities that influence the behavior of various cell types including neuronal plasticity, but the underlying molecular mechanisms remain mostly unknown. The trans-membrane receptor low-density lipoprotein receptor-related protein-1 (LRP-1) consists of a large extracellular chain with distinct ligand-binding domains that interact with numerous ligands including TIMP-2 and TIMP-3 and a short transmembrane chain with intracellular motifs that allow endocytosis and confer signaling properties to LRP-1. We addressed TIMP-1 interaction with recombinant ligand-binding domains of LRP-1 expressed by CHO cells for endocytosis study, or linked onto sensor chips for surface plasmon resonance analysis. Primary cortical neurons bound and internalized endogenous TIMP-1 through a mechanism mediated by LRP-1. This resulted in inhibition of neurite outgrowth and increased growth cone volume. Using a mutated inactive TIMP-1 variant we showed that TIMP-1 effect on neurone morphology was independent of its MMP inhibitory activity. We conclude that TIMP-1 is a new ligand of LRP-1 and we highlight a new example of its MMP-independent, cytokine-like functions.


Asunto(s)
Receptores de LDL/fisiología , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Proteínas Supresoras de Tumor/fisiología , Animales , Células CHO , Cricetinae , Cricetulus , Citocinas/metabolismo , Endocitosis , Conos de Crecimiento/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Ratones , Neuritas/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas
18.
J Neurochem ; 131(1): 33-41, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24903831

RESUMEN

The tetrodotoxin-resistant (TTX-R) voltage-gated sodium channel Nav 1.8 is predominantly expressed in peripheral afferent neurons, but in case of neuronal injury an ectopic and detrimental expression of Nav 1.8 occurs in neurons of the CNS. In CNS neurons, Nav 1.2 and Nav 1.6 channels accumulate at the axon initial segment, the site of the generation of the action potential, through a direct interaction with the scaffolding protein ankyrin G (ankG). This interaction is regulated by protein kinase CK2 phosphorylation. In this study, we quantitatively analyzed the interaction between Nav 1.8 and ankG. GST pull-down assay and surface plasmon resonance technology revealed that Nav 1.8 strongly and constitutively interacts with ankG, in comparison to what observed for Nav 1.2. An ion channel bearing the ankyrin-binding motif of Nav 1.8 displaced the endogenous Nav 1 accumulation at the axon initial segment of hippocampal neurons. Finally, Nav 1.8 and ankG co-localized in skin nerves fibers. Altogether, these results indicate that Nav 1.8 carries all the information required for its localization at ankG micro-domains. The constitutive binding of Nav 1.8 with ankG could contribute to the pathological aspects of illnesses where Nav 1.8 is ectopically expressed in CNS neurons.


Asunto(s)
Ancirinas/metabolismo , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología , Secuencia de Aminoácidos , Animales , Células Cultivadas , Femenino , Masculino , Ratones , Datos de Secuencia Molecular , Embarazo , Unión Proteica/fisiología , Ratas , Ratas Wistar
19.
Biosens Bioelectron ; 57: 207-12, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24583693

RESUMEN

Botulinum neurotoxin A (BoNT/A) has intrinsic endoprotease activity specific for SNAP-25, a key protein for presynaptic neurotransmitter release. The inactivation of SNAP-25 by BoNT/A underlies botulism, a rare but potentially fatal disease. There is a crucial need for a rapid and sensitive in vitro serological test for BoNT/A to replace the current in vivo mouse bioassay. Cleavage of SNAP-25 by BoNT/A generates neo-epitopes which can be detected by binding of a monoclonal antibody (mAb10F12) and thus measured by surface plasmon resonance (SPR). We have explored two SPR assay formats, with either mAb10F12 or His6-SNAP-25 coupled to the biosensor chip. When BoNT/A was incubated with SNAP-25 in solution and the reaction products were captured on a mAb-coated chip, a sensitivity of 5 fM (0.1LD50/ml serum) was obtained. However, this configuration required prior immunoprecipitation of BoNT/A. A sensitivity of 0.5 fM in 10% serum (0.1 LD50/ml serum) was attained when SNAP-25 was coupled directly to the chip, followed by sequential injection of BoNT/A samples and mAb10F12 into the flow system to achieve on-chip cleavage and detection, respectively. This latter format detected BoNT/A endoprotease activity in 50-100 µl serum samples from all patients (11/11) with type A botulism within 5h. No false positives occurred in sera from healthy subjects or patients with other neurological diseases. The automated chip-based procedure has excellent specificity and sensitivity, with significant advantages over the mouse bioassay in terms of rapidity, required sample volume and animal ethics.


Asunto(s)
Técnicas Biosensibles/métodos , Toxinas Botulínicas Tipo A/sangre , Botulismo/sangre , Animales , Anticuerpos Inmovilizados/química , Anticuerpos Monoclonales/química , Toxinas Botulínicas Tipo A/metabolismo , Botulismo/diagnóstico , Botulismo/metabolismo , Humanos , Límite de Detección , Ratones , Péptido Hidrolasas/sangre , Péptido Hidrolasas/metabolismo , Análisis por Matrices de Proteínas/métodos
20.
Biosens Bioelectron ; 49: 276-81, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23787358

RESUMEN

Botulinum neurotoxin A (BoNT/A) induces muscle paralysis by enzymatically cleaving the presynaptic SNARE protein SNAP-25, which results in lasting inhibition of acetylcholine release at the neuromuscular junction. A rapid and sensitive in vitro assay for BoNT/A is required to replace the mouse lethality assay (LD50) in current use. We have developed a fully automated sensor to assay the endoprotease activity of BoNT/A. We produced monoclonal antibodies (mAbs) that recognize SNAP-25 neo-epitopes specifically generated by BoNT/A action. Recombinant SNAP-25 was coupled to the sensor surface of a surface plasmon resonance (SPR) system and samples containing BoNT/A were injected over the substrate sensor. Online substrate cleavage was monitored by measuring binding of mAb10F12 to a SNAP-25 neo-epitope. The SNAP-25-chip assay was toxin serotype-specific and detected 55 fM BoNT/A (1 LD50/ml) in 5 min and 0.4 fM (0.01 LD50/ml) in 5h. Time-course and dose-response curves were linear, yielding a limit of quantification of 0.03 LD50/ml. This label-free method is 100 times more sensitive than the mouse assay, potentially providing rapid read-out of small amounts of toxin for environmental surveillance and the quality control of pharmaceutical preparations.


Asunto(s)
Toxinas Botulínicas Tipo A/análisis , Toxinas Botulínicas Tipo A/metabolismo , Clostridium botulinum/metabolismo , Neurotoxinas/análisis , Neurotoxinas/metabolismo , Péptido Hidrolasas/metabolismo , Resonancia por Plasmón de Superficie/métodos , Animales , Anticuerpos Monoclonales/metabolismo , Botulismo/microbiología , Humanos , Proteínas Inmovilizadas/metabolismo , Límite de Detección , Ratones , Análisis por Matrices de Proteínas/métodos , Proteínas Recombinantes/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...