Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Data ; 11(1): 522, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778120

RESUMEN

Diatoms are microalgae that live in marine and freshwater environments and are responsible for about 20% of the world's carbon fixation. Population dynamics of these cells is finely regulated by intricate signal transduction systems, in which oxylipins are thought to play a relevant role. These are oxygenated fatty acids whose biosynthesis is initiated by a lipoxygenase enzyme (LOX) and are widely distributed in all phyla, including diatoms. Here, we present a de novo transcriptome obtained from the RNA-seq performed in the diatom species Pseudo-nitzschia arenysensis, using both a wild-type and a LOX-silenced strain, which will represent a reliable reference for comparative analyses within the Pseudo-nitzschia genus and at a broader taxonomic scale. Moreover, the RNA-seq data can be interrogated to go deeper into the oxylipins metabolic pathways.


Asunto(s)
Diatomeas , Lipooxigenasa , Transcriptoma , Diatomeas/genética , Diatomeas/enzimología , Lipooxigenasa/genética , Lipooxigenasa/metabolismo , Oxilipinas/metabolismo
2.
Mol Ecol ; 33(8): e17320, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38506152

RESUMEN

Sexual reproduction is a major driver of adaptation and speciation in eukaryotes. In diatoms, siliceous microalgae with a unique cell size reduction-restitution life cycle and among the world's most prolific primary producers, sex also acts as the main mechanism for cell size restoration through the formation of an expanding auxospore. However, the molecular regulators of the different stages of sexual reproduction and size restoration are poorly explored. Here, we combined RNA sequencing with the assembly of a 55 Mbp reference genome for Cylindrotheca closterium to identify patterns of gene expression during different stages of sexual reproduction. These were compared with a corresponding transcriptomic time series of Seminavis robusta to assess the degree of expression conservation. Integrative orthology analysis revealed 138 one-to-one orthologues that are upregulated during sex in both species, among which 56 genes consistently upregulated during cell pairing and gametogenesis, and 11 genes induced when auxospores are present. Several early, sex-specific transcription factors and B-type cyclins were also upregulated during sex in other pennate and centric diatoms, pointing towards a conserved core regulatory machinery for meiosis and gametogenesis across diatoms. Furthermore, we find molecular evidence that the pheromone-induced cell cycle arrest is short-lived in benthic diatoms, which may be linked to their active mode of mate finding through gliding. Finally, we exploit the temporal resolution of our comparative analysis to report the first marker genes for auxospore identity called AAE1-3 ("Auxospore-Associated Expression"). Altogether, we introduce a multi-species model of the transcriptional dynamics during size restoration in diatoms and highlight conserved gene expression dynamics during different stages of sexual reproduction.


Asunto(s)
Diatomeas , Diatomeas/genética , Reproducción/genética , Meiosis , Genoma , Transcriptoma/genética
3.
Sci Rep ; 14(1): 6028, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472358

RESUMEN

Understanding the genetic structure of populations and the processes responsible for its spatial and temporal dynamics is vital for assessing species' adaptability and survival in changing environments. We investigate the genetic fingerprinting of blooming populations of the marine diatom Pseudo-nitzschia multistriata in the Gulf of Naples (Mediterranean Sea) from 2008 to 2020. Strains were genotyped using microsatellite fingerprinting and natural samples were also analysed with Microsatellite Pool-seq Barcoding based on Illumina sequencing of microsatellite loci. Both approaches revealed a clonal expansion event in 2013 and a more stable genetic structure during 2017-2020 compared to previous years. The identification of a mating type (MT) determination gene allowed to assign MT to strains isolated over the years. MTs were generally at equilibrium with two notable exceptions, including the clonal bloom of 2013. The populations exhibited linkage equilibrium in most blooms, indicating that sexual reproduction leads to genetic homogenization. Our findings show that P. multistriata blooms exhibit a dynamic genetic and demographic composition over time, most probably determined by deeper-layer cell inocula. Occasional clonal expansions and MT imbalances can potentially affect the persistence and ecological success of planktonic diatoms.


Asunto(s)
Diatomeas , Diatomeas/genética , Plancton/genética , Reproducción/genética , Comunicación Celular , Estructuras Genéticas
4.
New Phytol ; 241(4): 1592-1604, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38084038

RESUMEN

Diatoms are a highly successful group of phytoplankton, well adapted also to oligotrophic environments and capable of handling nutrient fluctuations in the ocean, particularly nitrate. The presence of a large vacuole is an important trait contributing to their adaptive features. It confers diatoms the ability to accumulate and store nutrients, such as nitrate, when they are abundant outside and then to reallocate them into the cytosol to meet deficiencies, in a process called luxury uptake. The molecular mechanisms that regulate these nitrate fluxes are still not known in diatoms. In this work, we provide new insights into the function of Phaeodactylum tricornutum NPF1, a putative low-affinity nitrate transporter. To accomplish this, we generated overexpressing strains and CRISPR/Cas9 loss-of-function mutants. Microscopy observations confirmed predictions that PtNPF1 is localized on the vacuole membrane. Furthermore, functional characterizations performed on knock-out mutants revealed a transient growth delay phenotype linked to altered nitrate uptake. Together, these results allowed us to hypothesize that PtNPF1 is presumably involved in modulating intracellular nitrogen fluxes, managing intracellular nutrient availability. This ability might allow diatoms to fine-tune the assimilation, storage and reallocation of nitrate, conferring them a strong advantage in oligotrophic environments.


Asunto(s)
Diatomeas , Diatomeas/metabolismo , Nitratos/metabolismo , Nitrógeno/metabolismo , Vacuolas/metabolismo , Fitoplancton/metabolismo
5.
J Phycol ; 59(4): 637-643, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37256710

RESUMEN

Phytoplankton dynamics are regulated by external cues, such as light and nutrients, as well as by biotic interactions and endogenous controls linked to life cycle characteristics. The planktonic pennate diatom Pseudo-nitzschia multistriata, with a heterothallic mating system with two opposite mating types (MTs), represents a model for the study of diatom life cycles. P. multistriata is a toxic species, able to produce the neurotoxin domoic acid. First described in Japan in 1993, it was detected at the long-term monitoring station MareChiara (Gulf of Naples, Italy) in 1995. Since then, P. multistriata has been reported from several worldwide coastal sites. A large body of knowledge has been produced on its ecology, genetic diversity, and life cycle characteristics. The availability of these data, the ecological relevance of the Pseudo-nitzschia genus, and its controllable life cycle with a short generation time made it an ideal species to develop a genetic model system for diatoms. To enable functional studies, a 59 Mb genome sequence and several transcriptomic data were produced, and genetic transformation was optimized. These tools allowed the discovery of the first mating-type determining gene for diatoms. Gene expression studies and metabolomics analyses defined genes and molecules underpinning different phases of the process of sexual reproduction. This model system, developed to explore the genetics of diatom life cycles, offers the opportunity to parallel experimental observations in the laboratory using in situ meta-omics analyses along space and time, empowering knowledge on the biology and ecology of the genus.


Asunto(s)
Diatomeas , Animales , Fitoplancton , Reproducción/genética , Estadios del Ciclo de Vida , Italia , Ácido Kaínico/metabolismo
6.
BMC Genomics ; 24(1): 106, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36899305

RESUMEN

BACKGROUND: Dormancy is widespread in both multicellular and unicellular organisms. Among diatoms, unicellular microalgae at the base of all aquatic food webs, several species produce dormant cells (spores or resting cells) that can withstand long periods of adverse environmental conditions. RESULTS: We present the first gene expression study during the process of spore formation induced by nitrogen depletion in the marine planktonic diatom Chaetoceros socialis. In this condition, genes related to photosynthesis and nitrate assimilation, including high-affinity nitrate transporters (NTRs), were downregulated. While the former result is a common reaction among diatoms under nitrogen stress, the latter seems to be exclusive of the spore-former C. socialis. The upregulation of catabolic pathways, such as tricarboxylic acid cycle, glyoxylate cycle and fatty acid beta-oxidation, suggests that this diatom could use lipids as a source of energy during the process of spore formation. Furthermore, the upregulation of a lipoxygenase and several aldehyde dehydrogenases (ALDHs) advocates the presence of oxylipin-mediated signaling, while the upregulation of genes involved in dormancy-related pathways conserved in other organisms (e.g. serine/threonine-protein kinases TOR and its inhibitor GATOR) provides interesting avenues for future explorations. CONCLUSIONS: Our results demonstrate that the transition from an active growth phase to a resting one is characterized by marked metabolic changes and provides evidence for the presence of signaling pathways related to intercellular communication.


Asunto(s)
Diatomeas , Diatomeas/genética , Nitrógeno/metabolismo , Plancton , Esporas , Expresión Génica
7.
Open Biol ; 13(2): 220309, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36722300

RESUMEN

Diatoms represent one of the most abundant groups of microalgae in the ocean and are responsible for approximately 20% of photosynthetically fixed CO2 on Earth. Due to their complex evolutionary history and ability to adapt to different environments, diatoms are endowed with striking molecular biodiversity and unique metabolic activities. Their high growth rate and the possibility to optimize their biomass make them very promising 'biofactories' for biotechnological applications. Among bioactive compounds, diatoms can produce ovothiols, histidine-derivatives, endowed with unique antioxidant and anti-inflammatory properties, and occurring in many marine invertebrates, bacteria and pathogenic protozoa. However, the functional role of ovothiols biosynthesis in organisms remains almost unexplored. In this work, we have characterized the thiol fraction of Phaeodactylum tricornutum, providing the first evidence of the presence of ovothiol B in pennate diatoms. We have used P. tricornutum to overexpress the 5-histidylcysteine sulfoxide synthase ovoA, the gene encoding the key enzyme involved in ovothiol biosynthesis and we have discovered that OvoA localizes in the mitochondria, a finding that uncovers new concepts in cellular redox biochemistry. We have also obtained engineered biolistic clones that can produce higher amount of ovothiol B compared to wild-type cells, suggesting a new strategy for the eco-sustainable production of these molecules.


Asunto(s)
Diatomeas , Diatomeas/genética , Ingeniería Genética , Metilhistidinas , Evolución Biológica
8.
Methods Mol Biol ; 2498: 327-336, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35727554

RESUMEN

The CRISPR/Cas9 system coupled with proteolistics is a DNA-free nuclear transformation method based on the introduction of ribonucleoprotein (RNP) complexes into cells. The method has been set up for diatoms as an alternative to genetic transformation via biolistics and has the advantages of reducing off-target mutations, limiting the working time of the Cas9 endonuclease, and overcoming the occurrence of random insertions of the transgene in the genome. We present a point-by-point description of the protocol with modifications that make it more cost-effective, by reducing the amount of the enzyme while maintaining a comparable efficiency to the original protocol, and with an increased concentration of the selective drug which allows to reduce false positives.


Asunto(s)
Proteína 9 Asociada a CRISPR , Diatomeas , Biolística/métodos , Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Núcleo Celular/genética , Diatomeas/genética
9.
Sci Adv ; 8(3): eabj9466, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35044817

RESUMEN

Diatoms are fast-growing and winning competitors in aquatic environments, possibly due to optimized growth performance. However, their life cycles are complex, heteromorphic, and not fully understood. Here, we report on the fine control of cell growth and physiology during the sexual phase of the marine diatom Pseudo-nitzschia multistriata. We found that mating, under nutrient replete conditions, induces a prolonged growth arrest in parental cells. Transcriptomic analyses revealed down-regulation of genes related to major metabolic functions from the early phases of mating. Single-cell photophysiology also pinpointed an inhibition of photosynthesis and storage lipids accumulated in the arrested population, especially in gametes and zygotes. Numerical simulations revealed that growth arrest affects the balance between parental cells and their siblings, possibly favoring the new generation. Thus, in addition to resources availability, life cycle traits contribute to shaping the species ecological niches and must be considered to describe and understand the structure of plankton communities.


Asunto(s)
Diatomeas , Ciclo Celular , Demografía , Diatomeas/genética , Plancton , Reproducción/fisiología
10.
New Phytol ; 233(2): 809-822, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34533849

RESUMEN

Because of their importance as chemical mediators, the presence of a rich and varied family of lipoxygenase (LOX) products, collectively named oxylipins, has been investigated thoroughly in diatoms, and the involvement of these products in important processes such as bloom regulation has been postulated. Nevertheless, little information is available on the enzymes and pathways operating in these protists. Exploiting transcriptome data, we identified and characterized a LOX gene, PaLOX, in Pseudo-nitzschia arenysensis, a marine diatom known to produce different species of oxylipins by stereo- and regio-selective oxidation of eicosapentaenoic acid (EPA) at C12 and C15. PaLOX RNA interference correlated with a decrease of the lipid-peroxidizing activity and oxylipin synthesis, as well as with a reduction of growth of P. arenysensis. In addition, sequence analysis and structure models of the C-terminal part of the predicted protein closely fitted with the data for established LOXs from other organisms. The presence in the genome of a single LOX gene, whose downregulation impairs both 12- and 15-oxylipins synthesis, together with the in silico 3D protein modelling suggest that PaLOX encodes for a 12/15S-LOX with a dual specificity, and provides additional support to the correlation between cell growth and oxylipin biosynthesis in diatoms.


Asunto(s)
Diatomeas , Diatomeas/metabolismo , Lipooxigenasa/genética , Lipooxigenasa/metabolismo , Oxilipinas/metabolismo , Transcriptoma
11.
Molecules ; 26(24)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34946780

RESUMEN

Microalgae have a great potential for the production of healthy food and feed supplements. Their ability to convert carbon into high-value compounds and to be cultured in large scale without interfering with crop cultivation makes these photosynthetic microorganisms promising for the sustainable production of lipids. In particular, microalgae represent an alternative source of polyunsaturated fatty acids (PUFAs), whose consumption is related to various health benefits for humans and animals. In recent years, several strategies to improve PUFAs' production in microalgae have been investigated. Such strategies include selecting the best performing species and strains and the optimization of culturing conditions, with special emphasis on the different cultivation systems and the effect of different abiotic factors on PUFAs' accumulation in microalgae. Moreover, developments and results obtained through the most modern genetic and metabolic engineering techniques are described, focusing on the strategies that lead to an increased lipid production or an altered PUFAs' profile. Additionally, we provide an overview of biotechnological applications of PUFAs derived from microalgae as safe and sustainable organisms, such as aquafeed and food ingredients, and of the main techniques (and their related issues) for PUFAs' extraction and purification from microalgal biomass.


Asunto(s)
Acuicultura , Biomasa , Ácidos Grasos Insaturados , Ingeniería Metabólica , Microalgas , Ácidos Grasos Insaturados/biosíntesis , Ácidos Grasos Insaturados/genética , Microalgas/genética , Microalgas/crecimiento & desarrollo
12.
Harmful Algae ; 103: 101995, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33980435

RESUMEN

The cosmopolitan, species-rich diatom genus Pseudo-nitzschia represents a good system for the study of speciation, evolution and diversity. Understanding elements linked to population dynamics and life cycle regulation for these species is of particular importance in view of their ability to produce the toxin domoic acid and cause harmful blooms. Pseudo-nitzschia multistriata, one of the toxic species that represents a model for the study of life cycle related questions, is the only diatom for which a sex determination mechanism has been described. Populations in the Gulf of Naples (Mediterranean Sea), can share four different allelic variants (A, M, B, N) of the mating type determination region, and one of them (A) is responsible for the determination of the mating type + (MT+), defined by the MT+ restricted expression of the gene MRP3. Here, we analysed the sex determination genomic region in three new strains isolated from the Gulf of Mexico and compared it to the alleles previously described in the Mediterranean strains. We first show that these geographically distant strains of P. multistriata belong to different populations but can interbreed. Next, we show that the two populations share an overall similar structure of the genomic locus although differences can be seen in the polymorphic regions upstream of MRP3. In strain P4-C1, we amplified and sequenced an allele (M) identical to one of those previously characterized in the Mediterranean strains. In the other two strains, P4-C2 and P4-C5, we identified three new alleles, which we named A2, B2 and N2. P4-C2 and P4-C5 are heterozygous and share the common allele A2 linked to the monoallelic expression of the MT+ specific sex determining gene MRP3. Our results expand information on the global distribution of P. multistriata and on the level of conservation of the sex determination region in different populations. The definition of the extent of intra- and inter-specific conservation of this region would be a relevant addition to our understanding of Pseudo-nitzschia diversity and evolution.


Asunto(s)
Diatomeas , Alelos , Diatomeas/genética , Golfo de México , Mar Mediterráneo , Reproducción
13.
Open Biol ; 11(4): 200395, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33823659

RESUMEN

Diatoms are one of the major and most diverse groups of phytoplankton, with chimeric genomes harbouring a combination of genes of bacterial, animal and plant origin. They have developed sophisticated mechanisms to face environmental variations. In marine environments, nutrients concentration shows significant temporal and spatial variability, influencing phytoplankton growth. Among nutrients, nitrogen, present at micromolar levels, is often a limiting resource. Here, we report a comprehensive characterization of the Nitrate Transporter 1/Peptide Transporter Family (NPF) in diatoms, diNPFs. NPFs are well characterized in many organisms where they recognize a broad range of substrates, ranging from short-chained di- and tri-peptides in bacteria, fungi and mammals to a wide variety of molecules including nitrate in higher plants. Scarce information is available for diNPFs. We integrated-omics, phylogenetic, structural and expression analyses, to infer information on their role in diatoms. diNPF genes diverged to produce two distinct clades with strong sequence and structural homology with either bacterial or plant NPFs, with different predicted sub-cellular localization, suggesting that the divergence resulted in functional diversification. Moreover, transcription analysis of diNPF genes under different laboratory and environmental growth conditions suggests that diNPF diversification led to genetic adaptations that might contribute to diatoms ability to flourish in diverse environmental conditions.


Asunto(s)
Evolución Biológica , Diatomeas/fisiología , Genómica , Transportadores de Nitrato/química , Transportadores de Nitrato/fisiología , Conformación Proteica , Sitios de Unión , Biología Computacional/métodos , Bases de Datos Genéticas , Diatomeas/clasificación , Perfilación de la Expresión Génica , Genoma , Genómica/métodos , Modelos Moleculares , Filogenia , Filogeografía , Unión Proteica , Relación Estructura-Actividad , Factores de Transcripción/metabolismo
14.
Sci Rep ; 11(1): 1681, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33462289

RESUMEN

Due to their abundance in the oceans, their extraordinary biodiversity and the increasing use for biotech applications, the study of diatom biology is receiving more and more attention in the recent years. One of the limitations in developing molecular tools for diatoms lies in the peculiar nature of their cell wall, that is made of silica and organic molecules and that hinders the application of standard methods for cell lysis required, for example, to extract organelles. In this study we present a protocol for intact nuclei isolation from diatoms that was successfully applied to three different species: two pennates, Pseudo-nitzschia multistriata and Phaeodactylum tricornutum, and one centric diatom species, Chaetoceros diadema. Intact nuclei were extracted by treatment with acidified NH4F solution combined to low intensity sonication pulses and separated from cell debris via FAC-sorting upon incubation with SYBR Green. Microscopy observations confirmed the integrity of isolated nuclei and high sensitivity DNA electrophoresis showed that genomic DNA extracted from isolated nuclei has low degree of fragmentation. This protocol has proved to be a flexible and versatile method to obtain intact nuclei preparations from different diatom species and it has the potential to speed up applications such as epigenetic explorations as well as single cell ("single nuclei") genomics, transcriptomics and proteomics in different diatom species.


Asunto(s)
Fraccionamiento Celular/métodos , Núcleo Celular/química , Diatomeas/citología , Fraccionamiento Celular/normas , Núcleo Celular/genética , Núcleo Celular/metabolismo , ADN/genética , ADN/metabolismo , Diatomeas/genética , Diatomeas/metabolismo , Microscopía Confocal , Fracciones Subcelulares/metabolismo
16.
Antioxidants (Basel) ; 9(8)2020 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-32824292

RESUMEN

Microalgae represent a promising resource for the production of beneficial natural compounds due to their richness in secondary metabolites and easy cultivation. Carotenoids feature among distinctive compounds of many microalgae, including diatoms, which owe their golden color to the xanthophyll fucoxanthin. Carotenoids have antioxidant, anti-obesity and anti-inflammatory properties, and there is a considerable market demand for these compounds. Here, with the aim to increase the carotenoid content in the model diatom Phaeodactylum tricornutum, we exploited genetic transformation to overexpress genes involved in the carotenoid biosynthetic pathway. We produced transgenic lines over-expressing simultaneously one, two or three carotenoid biosynthetic genes, and evaluated changes in pigment content with high-performance liquid chromatography. Two triple transformants over-expressing the genes Violaxanthin de-epoxidase (Vde), Vde-related (Vdr) and Zeaxanthin epoxidase 3 (Zep3) showed an accumulation of carotenoids, with an increase in the fucoxanthin content up to four fold. Vde, Vdr and Zep3 mRNA and protein levels in the triple transformants were coherently increased. The exact role of these enzymes in the diatom carotenoid biosynthetic pathway is not completely elucidated nevertheless our strategy successfully modulated the carotenoid metabolism leading to an accumulation of valuable compounds, leading the way toward improved utilization of microalgae in the field of antioxidants.

17.
Nat Commun ; 11(1): 3320, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620776

RESUMEN

Benthic diatoms are the main primary producers in shallow freshwater and coastal environments, fulfilling important ecological functions such as nutrient cycling and sediment stabilization. However, little is known about their evolutionary adaptations to these highly structured but heterogeneous environments. Here, we report a reference genome for the marine biofilm-forming diatom Seminavis robusta, showing that gene family expansions are responsible for a quarter of all 36,254 protein-coding genes. Tandem duplications play a key role in extending the repertoire of specific gene functions, including light and oxygen sensing, which are probably central for its adaptation to benthic habitats. Genes differentially expressed during interactions with bacteria are strongly conserved in other benthic diatoms while many species-specific genes are strongly upregulated during sexual reproduction. Combined with re-sequencing data from 48 strains, our results offer insights into the genetic diversity and gene functions in benthic diatoms.


Asunto(s)
Adaptación Fisiológica/genética , Diatomeas/genética , Ecosistema , Evolución Molecular , Genoma/genética , Diatomeas/clasificación , Diatomeas/metabolismo , Agua Dulce , Tamaño del Genoma , Genómica/métodos , Polimorfismo de Nucleótido Simple , Agua de Mar , Especificidad de la Especie , Transcriptoma/genética
18.
Mar Drugs ; 18(6)2020 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-32545923

RESUMEN

Pseudo-nitzschia multistriata is a planktonic marine diatom with a diplontic life cycle comprising a short sexual phase, during which gametes are produced following the encounter of two diploid cells of opposite mating type (MT). Gene expression studies have highlighted the presence of substantial changes occurring at the onset of sexual reproduction. Herein, we have hypothesized that the amount and nature of cellular metabolites varies along the mating process. To capture the metabolome of Pseudo-nitzschia multistriata at different harvesting times in an unbiased manner, we undertook an untargeted metabolomics approach based on liquid chromatography-tandem mass spectrometry. Using three different extraction steps, the method revealed pronounced differences in the metabolic profiles between control cells in the vegetative phase (MT+ and MT-) and mixed strains of opposite MTs (cross) undergoing sexual reproduction. Of the 2408 high-quality features obtained, 70 known metabolites could be identified based on in-house libraries and online databases; additional 46 features could be classified by molecular networking of tandem mass spectra. The reduction of phytol detected in the cross can be linked to the general downregulation of photosynthesis during sexual reproduction observed elsewhere. Moreover, the role of highly regulated compounds such as 7-dehydrodesmosterol, whose changes in abundance were the highest in the experiment, oleamide, ectoine, or trigonelline is discussed.


Asunto(s)
Diatomeas/fisiología , Reproducción/fisiología , Animales , Metabolómica , Agua de Mar
19.
Genes (Basel) ; 11(1)2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31861932

RESUMEN

Transposable elements (TEs), activated as a response to unfavorable conditions, have been proposed to contribute to the generation of genetic and phenotypic diversity in diatoms. Here we explore the transcriptome of three warm water strains of the diatom Leptocylindrus aporus, and the possible involvement of TEs in their response to changing temperature conditions. At low temperature (13 °C) several stress response proteins were overexpressed, confirming low temperature to be unfavorable for L. aporus, while TE-related transcripts of the LTR retrotransposon superfamily were the most enriched transcripts. Their expression levels, as well as most of the stress-related proteins, were found to vary significantly among strains, and even within the same strains analysed at different times. The lack of overexpression after many months of culturing suggests a possible role of physiological plasticity in response to growth under controlled laboratory conditions. While further investigation on the possible central role of TEs in the diatom stress response is warranted, the strain-specific responses and possible role of in-culture evolution draw attention to the interplay between the high intraspecific variability and the physiological plasticity of diatoms, which can both contribute to the adaptation of a species to a wide range of conditions in the marine environment.


Asunto(s)
Elementos Transponibles de ADN , Perfilación de la Expresión Génica/métodos , Estramenopilos/genética , Adaptación Fisiológica , Respuesta al Choque por Frío , Evolución Molecular , Regulación de la Expresión Génica , Análisis de Secuencia de ARN
20.
BMC Genomics ; 20(1): 544, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31277569

RESUMEN

Following the publication of this article [1], the authors reported that the link to Additional file 11 linked to the wrong set of data. The correct supplementary data is provided in this Correction article (Additional file 11).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA