Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39126091

RESUMEN

The innate immune system, composed of neutrophils, basophils, eosinophils, myeloid-derived suppressor cells (MDSCs), macrophages, dendritic cells (DCs), mast cells (MCs), and innate lymphoid cells (ILCs), is the first line of defense. Growing evidence demonstrates the crucial role of innate immunity in tumor initiation and progression. Several studies support the idea that innate immunity, through the release of pro- and/or anti-inflammatory cytokines and tumor growth factors, plays a significant role in the pathogenesis, progression, and prognosis of cutaneous malignant melanoma (MM). Cutaneous melanoma is the most common skin cancer, with an incidence that rapidly increased in recent decades. Melanoma is a highly immunogenic tumor, due to its high mutational burden. The metastatic form retains a high mortality. The advent of immunotherapy revolutionized the therapeutic approach to this tumor and significantly ameliorated the patients' clinical outcome. In this review, we will recapitulate the multiple roles of innate immune cells in melanoma and the related implications for immunotherapy.


Asunto(s)
Inmunidad Innata , Inmunoterapia , Melanoma , Humanos , Melanoma/terapia , Melanoma/inmunología , Melanoma/patología , Inmunoterapia/métodos , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/terapia , Neoplasias Cutáneas/patología , Animales , Células Dendríticas/inmunología , Melanoma Cutáneo Maligno , Mastocitos/inmunología
3.
Allergy ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935036

RESUMEN

BACKGROUND: Hereditary angioedema (HAE) is a rare genetic disorder characterized by local, self-limiting edema due to temporary increase in vascular permeability. HAE with normal C1 esterase inhibitor (C1INH) activity includes the form with mutations in the F12 gene encoding for coagulation factor XII (FXII-HAE) causing an overproduction of bradykinin (BK) leading to angioedema attack. BK binding to B2 receptors (BK2R) leads to an activation of phospholipase C (PLC) and subsequent generation of second messengers: diacylglycerols (DAGs) and possibly the endocannabinoids (eCBs), 2-arachidonoylglycerol (2-AG) and anandamide (AEA), and eCB-related N-acylethanolamines [palmitoylethanolamide (PEA) and oleoylethanolamide (OEA)]. To date, there are no data on the role of these lipid mediators in FXII-HAE. METHODS: Here, we analyzed plasma levels of PLC, DAGs, and eCBs in 40 patients with FXII-HAE and 40 sex- and age-matched healthy individuals. RESULTS: Plasma PLC activity was increased in FXII-HAE patients compared to controls. Concentrations of DAG 18:1-20:4, a lipid second messenger produced by PLC, were higher in FXII-HAE compared to controls, and positively correlated with PLC activity and cleaved high molecular kininogen (cHK). Also the concentrations of the DAG metabolite, 2-AG were altered in FXII-HAE. AEA and OEA were decreased in FXII-HAE patients compared to controls; by contrast, PEA, was increased. The levels of all tested mediators did not differ between symptomatic and asymptomatic patients. Moreover, C1INH-HAE patients had elevated plasma levels of PLC, which correlated with cHK, but the levels of DAGs and eCBs were the same as controls. CONCLUSIONS: BK overproduction and BKR2 activation are linked to alteration of PLCs and their metabolites in patients with FXII-HAE. Our results may pave way to investigations on the functions of these mediators in the pathophysiology of FXII-HAE, and provide new potential biomarkers and therapeutic targets.

4.
Immunol Res ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829492

RESUMEN

Idiopathic non-histaminergic acquired angioedema (InH-AAE) is a rare disease, with unknown etiology and pathogenesis, characterized by recurrent clinical manifestations and resistance to antihistamines and corticosteroids. We aim to evaluate clinical features and potential markers of disease in an Italian cohort of patients with InH-AAE. We enrolled 26 patients diagnosed with InH-AAE. Information about clinical features, treatments, routine laboratory investigations, immunological and genetic tests were collected. We assessed plasma levels of complement components, angiogenic and lymphangiogenic mediators, proinflammatory cytokines and chemokines, and activity of phospholipases A2. Finally, patients underwent nailfold videocapillaroscopy (NVC); both quantitative and qualitative capillaroscopic parameters were analyzed. Plasma levels of VEGFs were similar in healthy controls and in InH-AAE patients. ANGPT1 was decreased in InH-AAE patients compared to controls while ANGPT2 was similar to controls. Interestingly, the ANGPT2/ANGPT1 ratio (an index of vascular permeability) was increased in InH-AAE patients compared to controls. sPLA2 activity, elevated in patients with C1-INH-HAE, showed differences also when measured in InH-AAE patients. TNF-α concentration was higher in InH-AAE patients than in healthy controls, conversely, the levels of CXCL8, and IL-6 were similar in both groups. At the NVC, the capillary loops mainly appeared short and tortuous in InH-AAE patients. InH-AAE represents a diagnostic challenge. Due to the potential life-threatening character of this condition, a prompt identification of the potentially bradykinin-mediated forms is crucial. A better comprehension of the mechanism involved in InH-AAE would also lead to the development of new therapeutic approaches to improve life quality of patients affected by this disabling disease.

5.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38612858

RESUMEN

Thymic stromal lymphopoietin (TSLP), mainly expressed by epithelial cells, plays a central role in asthma. In humans, TSLP exists in two variants: the long form TSLP (lfTSLP) and a shorter TSLP isoform (sfTSLP). Macrophages (HLMs) and mast cells (HLMCs) are in close proximity in the human lung and play key roles in asthma. We evaluated the early proteolytic effects of tryptase and chymase released by HLMCs on TSLP by mass spectrometry. We also investigated whether TSLP and its fragments generated by these enzymes induce angiogenic factor release from HLMs. Mass spectrometry (MS) allowed the identification of TSLP cleavage sites caused by tryptase and chymase. Recombinant human TSLP treated with recombinant tryptase showed the production of 1-97 and 98-132 fragments. Recombinant chymase treatment of TSLP generated two peptides, 1-36 and 37-132. lfTSLP induced the release of VEGF-A, the most potent angiogenic factor, from HLMs. By contrast, the four TSLP fragments generated by tryptase and chymase failed to activate HLMs. Long-term TSLP incubation with furin generated two peptides devoid of activating property on HLMs. These results unveil an intricate interplay between mast cell-derived proteases and TSLP. These findings have potential relevance in understanding novel aspects of asthma pathobiology.


Asunto(s)
Asma , Linfopoyetina del Estroma Tímico , Humanos , Triptasas , Quimasas , Inductores de la Angiogénesis , Serina Proteasas , Citocinas
6.
Eur J Intern Med ; 124: 89-98, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38402021

RESUMEN

BACKGROUND: Macrophages are the predominant immune cells in the human lung and play a central role in airway inflammation, including asthma and chronic obstructive pulmonary disease (COPD). Thymic stromal lymphopoietin (TSLP), a pleiotropic cytokine mainly expressed by bronchial epithelial cells, plays a key role in asthma and COPD pathobiology. TSLP exists in two variants: the long form (lfTSLP) and a shorter TSLP isoform (sfTSLP). We aimed to localize TSLP in human lung macrophages (HLMs) and investigate the mechanisms of its release from these cells. We also evaluated the effects of the two variants of TSLP on the release of angiogenic factor from HLMs. METHODS: We employed immunofluorescence and Western blot to localize intracellular TSLP in HLMs purified from human lung parenchyma. HLMs were activated by T2-high (IL-4, IL-13) and T2-low (lipopolysaccharide: LPS) immunological stimuli. RESULTS: TSLP was detected in HLMs and subcellularly localized in the cytoplasm. IL-4 and LPS induced TSLP release from HLMs. Preincubation of macrophages with brefeldin A, known to disrupt the Golgi apparatus, inhibited TSLP release induced by LPS and IL-4. lfTSLP concentration-dependently induced the release of vascular endothelial growth factor-A (VEGF-A), the most potent angiogenic factor, from HLMs. sfTSLP neither activated nor interfered with the activating property of lfTSLP on macrophages. CONCLUSIONS: Our results highlight a novel immunologic circuit between HLMs and TSLP. Given the central role of macrophages in airway inflammation, this autocrine loop holds potential translational relevance in understanding innovative aspects of the pathobiology of asthma and chronic inflammatory lung disorders.


Asunto(s)
Asma , Citocinas , Interleucina-4 , Lipopolisacáridos , Macrófagos Alveolares , Enfermedad Pulmonar Obstructiva Crónica , Linfopoyetina del Estroma Tímico , Humanos , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Asma/metabolismo , Asma/inmunología , Citocinas/metabolismo , Interleucina-4/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/inmunología , Lipopolisacáridos/farmacología , Interleucina-13/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...