RESUMEN
Bitter taste receptors (TAS2R) are involved in a variety of non-tasting physiological processes, including immune-inflammatory ones. Therefore, their genetic variations might influence various traits. In particular, in different populations of South Italy (Calabria, Cilento, and Sardinia), polymorphisms of TAS2R16 and TAS238 have been analysed in association with longevity with inconsistent results. A meta-analytic approach to quantitatively synthesize the possible effect of the previous variants and, possibly, to reconcile the inconsistencies has been used in the present paper. TAS2R38 variants in the Cilento population were also analysed for their possible association with longevity and the obtained data have been included in the relative meta-analysis. In population from Cilento no association was found between TAS2R38 and longevity, and no association was observed as well, performing the meta-analysis with data of the other studies. Concerning TAS2R16 gene, instead, the genotype associated with longevity in the Calabria population maintained its significance in the meta-analysis with data from Cilento population, that, alone, were not significant in the previously published study. In conclusion, our results suggest that TAS2R16 genotype variant is associated with longevity in South Italy.
Asunto(s)
Longevidad , Gusto , Genotipo , Humanos , Longevidad/genética , Polimorfismo de Nucleótido Simple , Receptores Acoplados a Proteínas G/genética , Gusto/genéticaRESUMEN
Aging is the most relevant risk factor for cardiovascular diseases which are the main cause of mortality in industrialized countries. In this context, there is a progressive loss of cardiovascular homeostasis that translates in illness and death. The study of long living individuals (LLIs), which show compression of morbidity toward the end of their life, is a valuable approach to find the key to delay aging and postpone associate cardiovascular events. A contribution to the age-related decline of cardiovascular system (CVS) comes from the immune system; indeed, it is dysfunctional during aging, a process described as immunosenescence and comprises the combination of several processes overpowering both innate and adaptative immune system. We have recently discovered a longevity-associated variant (LAV) in bactericidal/permeability-increasing fold-containing family B member 4 (BPIFB4), which is a secreted protein able to enhance endothelial function through endothelial nitric oxide synthase (eNOS) activation and capable to protect from hypertension, atherosclerosis, diabetic cardiopathy, frailty, and inflammaging. Here, we sum up the state of the art of the mechanisms involved in the main pathological processes related to CVD (atherosclerosis, aging, diabetic cardiopathy, and frailty) and shed light on the therapeutic effects of LAV-BPIFB4 in these contexts.
Asunto(s)
Aterosclerosis/genética , Cardiomiopatías Diabéticas/genética , Fragilidad/genética , Hipertensión/genética , Inmunosenescencia/genética , Longevidad/genética , Fosfoproteínas/genética , Inmunidad Adaptativa , Factores de Edad , Animales , Aterosclerosis/inmunología , Aterosclerosis/prevención & control , Cardiomiopatías Diabéticas/inmunología , Cardiomiopatías Diabéticas/prevención & control , Fragilidad/inmunología , Fragilidad/prevención & control , Regulación del Desarrollo de la Expresión Génica/inmunología , Terapia Genética/métodos , Humanos , Hipertensión/inmunología , Hipertensión/prevención & control , Inmunidad Innata , Péptidos y Proteínas de Señalización Intercelular , Longevidad/inmunología , Ratones , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/inmunología , Fosfoproteínas/inmunología , Isoformas de Proteínas/genética , Isoformas de Proteínas/inmunología , Factores de RiesgoRESUMEN
The longevity-associated variant (LAV) of the bactericidal/permeability-increasing fold-containing family B member 4 (BPIFB4) has been found significantly enriched in long-living individuals. Neuroinflammation is a key player in Huntington's disease (HD), a neurodegenerative disorder caused by neural death due to expanded CAG repeats encoding a long polyglutamine tract in the huntingtin protein (Htt). Herein, we showed that striatal-derived cell lines with expanded Htt (STHdh Q111/111) expressed and secreted lower levels of BPIFB4, when compared with Htt expressing cells (STHdh Q7/7), which correlated with a defective stress response to proteasome inhibition. Overexpression of LAV-BPIFB4 in STHdh Q111/111 cells was able to rescue both the BPIFB4 secretory profile and the proliferative/survival response. According to a well-established immunomodulatory role of LAV-BPIFB4, conditioned media from LAV-BPIFB4-overexpressing STHdh Q111/111 cells were able to educate Immortalized Human Microglia-SV40 microglial cells. While STHdh Q111/111 dying cells were ineffective to induce a CD163 + IL-10high pro-resolving microglia compared to normal STHdh Q7/7, LAV-BPIFB4 transduction promptly restored the central immune control through a mechanism involving the stromal cell-derived factor-1. In line with the in vitro results, adeno-associated viral-mediated administration of LAV-BPIFB4 exerted a CXCR4-dependent neuroprotective action in vivo in the R6/2 HD mouse model by preventing important hallmarks of the disease including motor dysfunction, body weight loss, and mutant huntingtin protein aggregation. In this view, LAV-BPIFB4, due to its pleiotropic ability in both immune compartment and cellular homeostasis, may represent a candidate for developing new treatment for HD.
Asunto(s)
Cuerpo Estriado/patología , Progresión de la Enfermedad , Variación Genética , Enfermedad de Huntington/patología , Péptidos y Proteínas de Señalización Intercelular/genética , Longevidad , Microglía/patología , Fosfoproteínas/genética , Receptores CXCR4/metabolismo , Animales , Bencilaminas/farmacología , Muerte Celular/efectos de los fármacos , Línea Celular , Línea Celular Transformada , Polaridad Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ciclamas/farmacología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Ontología de Genes , Enfermedad de Huntington/genética , Enfermedad de Huntington/fisiopatología , Inflamación/patología , Longevidad/genética , Microglía/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismoRESUMEN
Long-Living Individuals (LLIs) delay aging and are less prone to chronic inflammatory reactions. Whether a distinct monocytes and macrophages repertoire is involved in such a characteristic remains unknown. Previous studies from our group have shown high levels of the host defense BPI Fold Containing Family B Member 4 (BPIFB4) protein in the peripheral blood of LLIs. Moreover, a polymorphic variant of the BPIFB4 gene associated with exceptional longevity (LAV-BPIFB4) confers protection from cardiovascular diseases underpinned by low-grade chronic inflammation, such as atherosclerosis. We hypothesize that BPIFB4 may influence monocytes pool and macrophages skewing, shifting the balance toward an anti-inflammatory phenotype. We profiled circulating monocytes in 52 LLIs (median-age 97) and 52 healthy volunteers (median-age 55) using flow cytometry. If the frequency of total monocyte did not change, the intermediate CD14++CD16+ monocytes counts were lower in LLIs compared to control adults. Conversely, non-classical CD14+CD16++ monocyte counts, which are M2 macrophage precursors with an immunomodulatory function, were found significantly associated with the LLIs' state. In a differentiation assay, supplementation of the LLIs' plasma enhanced the capacity of monocytes, either from LLIs or controls, to acquire a paracrine M2 phenotype. A neutralizing antibody against the phosphorylation site (ser 75) of BPIFB4 blunted the M2 skewing effect of the LLIs' plasma. These data indicate that LLIs carry a peculiar anti-inflammatory myeloid profile, which is associated with and possibly sustained by high circulating levels of BPIFB4. Supplementation of recombinant BPIFB4 may represent a novel means to attenuate inflammation-related conditions typical of unhealthy aging.
Asunto(s)
Aterosclerosis/genética , Biomarcadores/sangre , Péptidos y Proteínas de Señalización Intercelular/sangre , Longevidad/fisiología , Macrófagos/inmunología , Monocitos/inmunología , Anciano de 80 o más Años , Anticuerpos Neutralizantes/metabolismo , Diferenciación Celular , Células Cultivadas , Femenino , Humanos , Inmunofenotipificación , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/inmunología , Receptores de Lipopolisacáridos/metabolismo , Masculino , Persona de Mediana Edad , Polimorfismo Genético , Células Th2/inmunologíaRESUMEN
AIMS: Here, we aimed to determine the therapeutic effect of longevity-associated variant (LAV)-BPIFB4 gene therapy on atherosclerosis. METHODS AND RESULTS: ApoE knockout mice (ApoE-/-) fed a high-fat diet were randomly allocated to receive LAV-BPIFB4, wild-type (WT)-BPIFB4, or empty vector via adeno-associated viral vector injection. The primary endpoints of the study were to assess (i) vascular reactivity and (ii) atherosclerotic disease severity, by Echo-Doppler imaging, histology and ultrastructural analysis. Moreover, we assessed the capacity of the LAV-BPIFB4 protein to shift monocyte-derived macrophages of atherosclerotic mice and patients towards an anti-inflammatory phenotype. LAV-BPIFB4 gene therapy rescued endothelial function of mesenteric and femoral arteries from ApoE-/- mice; this effect was blunted by AMD3100, a CXC chemokine receptor type 4 (CXCR4) inhibitor. LAV-BPIFB4-treated mice showed a CXCR4-mediated shift in the balance between Ly6Chigh/Ly6Clow monocytes and M2/M1 macrophages, along with decreased T cell proliferation and elevated circulating levels of interleukins IL-23 and IL-27. In vitro conditioning with LAV-BPIFB4 protein of macrophages from atherosclerotic patients resulted in a CXCR4-dependent M2 polarization phenotype. Furthermore, LAV-BPIFB4 treatment of arteries explanted from atherosclerotic patients increased the release of atheroprotective IL-33, while inhibiting the release of pro-inflammatory IL-1ß, inducing endothelial nitric oxide synthase phosphorylation and restoring endothelial function. Finally, significantly lower plasma BPIFB4 was detected in patients with pathological carotid stenosis (>25%) and intima media thickness >2 mm. CONCLUSION: Transfer of the LAV of BPIFB4 reduces the atherogenic process and skews macrophages towards an M2-resolving phenotype through modulation of CXCR4, thus opening up novel therapeutic possibilities in cardiovascular disease.
Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Anciano , Animales , Apolipoproteínas E , Aterosclerosis/genética , Grosor Intima-Media Carotídeo , Femenino , Humanos , Inflamación , Péptidos y Proteínas de Señalización Intercelular , Longevidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Noqueados para ApoE , Persona de Mediana Edad , Fosfoproteínas , Receptores CXCR4RESUMEN
BACKGROUND: There is an increasing concern about age-related frailty because of the growing number of elderly people in the general population. The Longevity-Associated Variant (LAV) of the human BPIFB4 gene was found to correct endothelial dysfunction, one of the mechanisms underlying frailty, in aging mice whereas the RV-BPIFB4 variant induced opposite effects. Thus, we newly hypothesize that, besides being associated with life expectancy, BPIFB4 polymorphisms can predict frailty.Aim and Results: Here we investigated if the BPIFB4 haplotypes, LAV, wild-type (WT) and RV, differentially associate with frailty in a cohort of 237 elderly subjects from Calabria region in Southern Italy. Moreover, we studied the effect of systemic adeno-associated viral vector-mediated LAV-BPIFB4 gene transfer on the progression of frailty in aging mice. We found an inverse correlation of the homozygous LAV-BPIFB4 haplotype with frailty in elderly subjects. Conversely, carriers of the RV-BPIFB4 haplotype showed an increase in the frailty status and risk of death. Moreover, in old mice, LAV-BPIFB4 gene transfer delayed frailty progression. CONCLUSIONS: These data indicate that specific BPIFB4 haplotypes could represent useful genetic markers of frailty. In addition, horizontal transfer of a healthy gene variant can attenuate frailty in aging organisms.
Asunto(s)
Envejecimiento/genética , Fragilidad/genética , Fosfoproteínas/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Femenino , Regulación de la Expresión Génica , Genotipo , Humanos , Péptidos y Proteínas de Señalización Intercelular , Longevidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosfoproteínas/genética , Organismos Libres de Patógenos EspecíficosRESUMEN
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
RESUMEN
One of the basis of exceptional longevity is the maintaining of the balance between inflammatory and anti-inflammatory networks. The monocyte-macrophages activation plays a major role in tuning the immune responses, by oscillating between patrolling-protective to inflammatory status. Longevity-associated variant (LAV) of bactericidal/permeability-increasing fold-containing family B member 4 (BPIFB4) activates calcium, PKC-alpha, and eNOS, rescuing endothelial dysfunction in aged mice and inducing revascularization. The BPIFB4's increment in serum of healthy long-living individuals (LLIs) compared to nonhealthy ones, its therapeutic potential in improving vascular homeostasis, which depends on immune system, together with its expression in bone marrow myeloid cells, suggests that LAV-BPIFB4 may improve immune regulation. Here we show that human monocytes exposed to LAV-BPIFB4 protein increased co-stimulatory molecules in resting state and reduced pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) after activating stimuli. Accordingly, a low percentage of CD69+ activated lymphocytes are found among LAV-BPIFB4-treated peripheral blood mononuclear cells (PBMCs). Moreover, human monocyte-derived dendritic cells (DCs) generated in presence of LAV-BPIFB4 secreted higher anti-(IL-10 and TGF-ß) and lower pro-inflammatory (TNF-α and IL-1ß) cytokines. Accordingly, LLIs' plasma showed higher levels of circulating IL-10 and of neutralizing IL-1 receptor antagonist (IL-1RA) compared to controls. Thus, LAV-BPIFB4 effects on myeloid compartment could represent one example of a genetic predisposition carried by LLIs to protect from immunological dysfunctions.
Asunto(s)
Inmunidad Adaptativa , Longevidad/fisiología , Monocitos/fisiología , Fosfoproteínas/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Células Cultivadas , Humanos , Péptidos y Proteínas de Señalización Intercelular , Interleucina-1beta/fisiología , Persona de Mediana Edad , Monocitos/metabolismo , Factor de Necrosis Tumoral alfa/fisiologíaRESUMEN
BACKGROUND: The aim of this study was to analyse the role of GM allotypes, i.e. the hereditary antigenic determinants expressed on immunoglobulin polypeptide chains, in the attainment of longevity. The role played by immunoglobulin allotypes in the control of immune responses is well known as well as the role of an efficient immune response in longevity achievement. So, it is conceivable that particular GM allotypes may contribute to the generation of an efficient immune response that supports successful ageing, hence longevity. METHODS: In order to show if GM allotypes play a role in the achievement of longevity, we typed the DNA of 95 Long-living individuals (LLIs) and 96 young control individuals (YCs) from South Italy for GM3/17 and GM23+/- alleles. RESULTS: To demonstrate the role of GM allotypes in the attainment of longevity we compared genotype and allele frequencies of GM allotypes between LLIs and YCs. A global chi-square test (3 × 2) shows that the distribution of genotypes at the GM 3/17 locus is highly significantly different in LLIs from that observed in YCs (p < 0.0001). The 2 × 2 chi-square test shows that the carriers of the GM3 allele contribute to this highly significant difference. Accordingly, GM3 allele is significantly overrepresented in LLIs. No significant differences were instead observed regarding GM23 allele. CONCLUSION: These preliminary results show that GM3 allotype is significantly overrepresented in LLIs. To best of our knowledge, this is the first study performed to assess the role of GM allotypes in longevity. So, it should be necessary to verify the data in a larger sample of individuals to confirm GM role in the attainment of longevity.
RESUMEN
Evolutionary forces select genetic variants that allow adaptation to environmental stresses. The genomes of centenarian populations could recapitulate the evolutionary adaptation model and reveal the secrets of disease resistance shown by these individuals. Indeed, longevity phenotype is supposed to have a genetic background able to survive or escape to age-related diseases. Among these, cardiovascular diseases (CVDs) are the most lethal and their major risk factor is aging and the associated frailty status. One example of genetic evolution revealed by the study of centenarians genome is the four missense Single Nucleotide Polymorphisms (SNPs) haplotype in bactericidal/permeability-increasing fold-containing family B, member 4 (BPIFB4) locus that is enriched in long living individuals: the longevity associated variant (LAV). Indeed, LAV-BPIFB4 is able to improve endothelial function and revascularization through the increase of endothelial nitric oxide synthase (eNOS) dependent nitric oxide production. This review recapitulates the beneficial effects of LAV-BPIFB4 and its therapeutic potential for the treatment of CVDs.
Asunto(s)
Enfermedades Cardiovasculares/genética , Longevidad/genética , Fosfoproteínas/genética , Polimorfismo de Nucleótido Simple , Selección Genética , Evolución Molecular , Humanos , Péptidos y Proteínas de Señalización IntercelularRESUMEN
BPIFB4 is associated with exceptional longevity: four single-nucleotide polymorphisms distinguish the wild-type form from a longevity-associated variant conferring positive effects on blood pressure. The effect of a rare variant (RV; allele frequency, 4%) on blood pressure is unknown. Here, we show that overexpression of RV-BPIFB4 in ex-vivo mouse vessels impairs phosphorylation of endothelial nitric oxide synthase (eNOS), blunting acetylcholine-evoked vasorelaxation; in vivo, virally mediated overexpression of RV-BPIFB4 increases blood pressure, an action absent in eNOS-deficient mice. In humans, we found RV carriers to have increased diastolic blood pressure, a finding that was more marked in subjects on anti-hypertensive medication; moreover, recombinant RV-BPIFB4 protein impaired eNOS function in ex-vivo human vessels. Thus, RV-BPIFB4 acts directly on blood pressure homeostasis and may represent a novel biomarker of vascular dysfunction and hypertension.
Asunto(s)
Presión Sanguínea/genética , Predisposición Genética a la Enfermedad , Variación Genética , Hipertensión/genética , Hipertensión/metabolismo , Óxido Nítrico/metabolismo , Fosfoproteínas/genética , Transducción de Señal , Anciano , Alelos , Animales , Biomarcadores , Vasos Sanguíneos/efectos de los fármacos , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética , Haplotipos , Humanos , Hipertensión/fisiopatología , Péptidos y Proteínas de Señalización Intercelular , Masculino , Ratones , Persona de Mediana Edad , Fosfoproteínas/farmacología , Polimorfismo de Nucleótido Simple , Proteínas Recombinantes/farmacologíaRESUMEN
AIMS: Ageing is associated with impairment of endothelial nitric oxide synthase (eNOS) and progressive reduction in endothelial function. A genetic study on long-living individuals-who are characterized by delays in ageing and in the onset of cardiovascular disease-previously revealed I229V (rs2070325) in bactericidal/permeability-increasing fold-containing-family-B-member-4 (BPIFB4) as a longevity-associated variant (LAV); the LAV protein enhanced endothelial NO production and vasorelaxation through a protein kinase R-like endoplasmic reticulum kinase/14-3-3/heat shock protein 90 signal. Here, we further characterize the molecular mechanisms underlying LAV-BPIFB4-dependent enhancement of vascular function. METHODS AND RESULTS: LAV-BPIFB4 upregulated eNOS function via mobilization of Ca2+ and activation of protein kinase C alpha (PKCα). Indeed, the overexpression of LAV-BPIFB4 in human endothelial cells enhanced ATP-induced Ca2+ mobilization and the translocation of PKCα to the plasma membrane. Coherently, pharmacological inhibition of PKCα blunted the positive effect of LAV-BPIFB4 on eNOS and endothelial function. In addition, although LAV-BPIFB4 lost the ability to activate PKCα and eNOS in ex vivo vessels studied in an external Ca2+-free medium and in vessels from eNOS-/- mice, it still potentiated endothelial activity, recruiting an alternative mechanism dependent upon endothelium-derived hyperpolarizing factor (EDHF). CONCLUSIONS: We have identified novel molecular determinants of the beneficial effects of LAV-BPIFB4 on endothelial function, showing the roles of Ca2+ mobilization and PKCα in eNOS activation and of EDHF when eNOS is inhibited. These results highlight the role LAV-BPIFB4 can have in restoring signals that are lost during ageing.
Asunto(s)
Señalización del Calcio , Células Endoteliales/enzimología , Arterias Mesentéricas/enzimología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosfoproteínas/metabolismo , Proteína Quinasa C-alfa/metabolismo , Vasodilatación , Animales , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Células Endoteliales/efectos de los fármacos , Activación Enzimática , Humanos , Péptidos y Proteínas de Señalización Intercelular , Potenciales de la Membrana , Arterias Mesentéricas/efectos de los fármacos , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo III/deficiencia , Óxido Nítrico Sintasa de Tipo III/genética , Fosfoproteínas/genética , Fosforilación , Isoformas de Proteínas , Proteína Quinasa C-alfa/antagonistas & inhibidores , Proteína Quinasa C-alfa/genética , Inhibidores de Proteínas Quinasas/farmacología , Transporte de Proteínas , Transfección , Regulación hacia Arriba , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacologíaRESUMEN
BACKGROUND: People that reach extreme ages (Long-Living Individuals, LLIs) are object of intense investigation for increase/decrease of genetic variant frequencies, genetic methylation levels, protein abundance in serum and tissues. The aim of these studies is the discovery of the mechanisms behind LLIs extreme longevity and the identification of markers of well-being. We have recently associated a BPIFB4 haplotype (LAV) with exceptional longevity under a homozygous genetic model, and identified that CD34(+) of LLIs subjects express higher BPIFB4 transcript as compared to CD34(+) of control population. It would be of interest to correlate serum BPIFB4 protein levels with exceptional longevity and health status of LLIs. METHODS: Western blots on cellular medium to detect BPIFB4 secretion in transfected HEK293T cells with plasmid carrying BPIFB4 and ELISA on LLIs serum to detect BPIFB4 levels. RESULTS: Here we show that BPIFB4 is a secreted protein and its levels are increased in serum of LLIs, and high BPIFB4 levels classify their health status. CONCLUSIONS: Serum BPIFB4 protein levels classify longevity and health status in LLIs. Further studies are required to evaluate the possible role of BPIFB4 in monitoring disease progression.
RESUMEN
RATIONALE: Long living individuals show delay of aging, which is characterized by the progressive loss of cardiovascular homeostasis, along with reduced endothelial nitric oxide synthase activity, endothelial dysfunction, and impairment of tissue repair after ischemic injury. OBJECTIVE: Exploit genetic analysis of long living individuals to reveal master molecular regulators of physiological aging and new targets for treatment of cardiovascular disease. METHODS AND RESULTS: We show that the polymorphic variant rs2070325 (Ile229Val) in bactericidal/permeability-increasing fold-containing-family-B-member-4 (BPIFB4) associates with exceptional longevity, under a recessive genetic model, in 3 independent populations. Moreover, the expression of BPIFB4 is instrumental to maintenance of cellular and vascular homeostasis through regulation of protein synthesis. BPIFB4 phosphorylation/activation by protein-kinase-R-like endoplasmic reticulum kinase induces its complexing with 14-3-3 and heat shock protein 90, which is facilitated by the longevity-associated variant. In isolated vessels, BPIFB4 is upregulated by mechanical stress, and its knock-down inhibits endothelium-dependent vasorelaxation. In hypertensive rats and old mice, gene transfer of longevity-associated variant-BPIFB4 restores endothelial nitric oxide synthase signaling, rescues endothelial dysfunction, and reduces blood pressure levels. Furthermore, BPIFB4 is implicated in vascular repair. BPIFB4 is abundantly expressed in circulating CD34(+) cells of long living individuals, and its knock-down in endothelial progenitor cells precludes their capacity to migrate toward the chemoattractant SDF-1. In a murine model of peripheral ischemia, systemic gene therapy with longevity-associated variant-BPIFB4 promotes the recruitment of hematopoietic stem cells, reparative vascularization, and reperfusion of the ischemic muscle. CONCLUSIONS: Longevity-associated variant-BPIFB4 may represent a novel therapeutic tool to fight endothelial dysfunction and promote vascular reparative processes.
Asunto(s)
Células Progenitoras Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Longevidad/genética , Músculo Esquelético/irrigación sanguínea , Neovascularización Fisiológica , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas 14-3-3/metabolismo , Factores de Edad , Anciano , Anciano de 80 o más Años , Animales , Presión Sanguínea , Movimiento Celular , Modelos Animales de Enfermedad , Europa (Continente) , Femenino , Estudios de Asociación Genética , Terapia Genética , Genotipo , Células HEK293 , Proteínas HSP90 de Choque Térmico/metabolismo , Miembro Posterior , Humanos , Hipertensión/genética , Hipertensión/metabolismo , Hipertensión/fisiopatología , Hipertensión/terapia , Péptidos y Proteínas de Señalización Intercelular , Isquemia/genética , Isquemia/metabolismo , Isquemia/fisiopatología , Isquemia/terapia , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fenotipo , Fosforilación , Interferencia de ARN , Ratas Endogámicas SHR , Transducción de Señal , Estrés Mecánico , Transfección , Estados Unidos , Vasodilatación , eIF-2 Quinasa/metabolismoRESUMEN
BACKGROUND: Lone atrial flutter (AFL) and atrial fibrillation (AF) are common and sometimes consequential cardiac conduction disorders with a strong heritability, as underlined by recent genome-wide association studies that identified genetic modifiers. Follow-up family-based genetic analysis also identified Mendelian transmission of disease alleles. Three affected members were exome-sequenced for the identification of potential causative mutations, which were subsequently validated by direct sequencing in the other 3 affected members. Taqman assay was then used to confirm the role of any mutation in an independent population of sporadic lone AFL/AF cases. RESULTS: The family cluster analysis provided evidence of genetic inheritance of AFL in the family via autosomal dominant transmission. The exome-sequencing of 3 family members identified 7 potential mutations: of these, rs58238559, a rare missense genetic variant in the ATP-binding cassette sub-family B, member 4 (ABCB4) gene was carried by all affected members. Further analysis of 82 subjects with sporadic lone AF, 63 subjects with sporadic lone AFL, and 673 controls revealed that the allele frequency for this variation was significantly higher in cases than in the controls (0.05 vs. 0.01; OR = 3.73; 95% CI = 1.16-11.49; P = 0.013). CONCLUSIONS: rs58238559 in ABCB4 is a rare missense variant with a significant effect on the development of AFL/AF.
Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Fibrilación Atrial/genética , Aleteo Atrial/genética , Mutación Missense , Polimorfismo de Nucleótido Simple , Anciano , Anciano de 80 o más Años , Análisis Mutacional de ADN , Exoma , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , LinajeRESUMEN
BACKGROUND: LMNA/C mutations have been linked to the premature aging syndrome Hutchinson's progeria, dilated cardiomyopathy 1A, skeletal myopathies (such as the autosomal dominant variant of Emery-Dreifuss muscular dystrophy and limb-girdle muscular dystrophy), Charcot-Marie-Tooth disorder type 2B1, mandibuloacral dysplasia, autosomal dominant partial lipodystrophy, and axonal neuropathy. Atrioventricular block (AVB) can be associated with several cardiac disorders and it can also be a highly heritable, primitive disease. One of the most common pathologies associated with AVB is dilated cardiomyopathy (DCM), which is characterized by cardiac dilatation and reduced systolic function. In this case, onset has been correlated with several mutations in genes essential for the proper maturation of cardiomyocytes, such as the gene for lamin A/C. However, no clear genotype-phenotype relationship has been reported to date between LMNA/C mutations and cardiomyopathies. RESULTS: DNA and medical histories were collected from (n = 11) members of different generations of one family, the proband of which was implanted with a pacemaker for lone, type II AVB. Exome sequencing analysis was performed on three relatives with AVB, and the mutations therein identified validated in a further three AVB-affected family members. In the initial three AVB family members, we identified 10 shared nonsynonymous single-nucleotide variations with a rare or unreported allele frequency in the 1000 Genomes Project database. Follow-up genetic screening in the additional three affected relatives disclosed a correlation between the lone AVB phenotype and the single-nucleotide polymorphism rs56816490, which generates an E317K change in lamin A/C. Although this mutation has already been described by others in a DCM-affected proband with familiarity for AVB and sudden death, the absence of DCM in our large, AVB-affected family is indicative of genotype-phenotype correlation between rs56816490 and a familial, autosomal dominant form of lone AVB. CONCLUSIONS: Screening for G613A in LMNA/C in patients with lone AVB and their relatives might prevent sudden death in families affected by AVB but without familiarity for DCM. Lone AVB is an age-related disease caused by mutations in LMNA/C gene rather than a complication of DCM.
RESUMEN
Vascular ageing can be envisioned as the consequence of the accumulation of reactive oxygen species (ROS) associated with generalized endothelial dysfunction. Oxidative stress arises when the balance between production and removal of ROS favours the pro-oxidation arm. Therefore, ROS have been traditionally considered to be only a toxic by-product of aerobic metabolism. However, it has become apparent that ROS might control many different physiological processes, such as stress response, pathogen defence and systemic signalling. This has lead to the hypothesis that a certain level of ROS is needed physiologically, so much so that an overly increased antioxidant potential might be deleterious for health. Recent evidence has strengthened this notion by correlating cellular response with oxidants and the mechanisms that regulate longevity. Here, we overview current literature on this topic and we will try to convince the reader of the importance of balanced oxidative stress for vascular integrity and healthy ageing.
Asunto(s)
Envejecimiento/fisiología , Vasos Sanguíneos/fisiología , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Envejecimiento/patología , Antioxidantes/metabolismo , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología , Humanos , Longevidad/fisiología , Transducción de SeñalRESUMEN
Aging is the sum of the deleterious changes that occur as time goes by. It is the main risk factor for the development of cardiovascular disease, and aging of the vasculature is the event that most often impacts on the health of elderly people. The "free-radical theory of aging" was proposed to explain aging as a consequence of the accumulation of reactive oxygen species (ROS). However, recent findings contradict this theory, and it now seems that mechanisms mediating longevity act through induction of oxidative stress. In fact, calorie restriction - a powerful way of delaying aging - increases ROS accumulation due to stimulation of the basal metabolic rate; moreover, reports show that antioxidant therapy is detrimental to healthy aging. We also now know that genetic manipulation of the insulin-like-growth-factor-1/insulin signal (IIS) has a profound impact on the rate of aging and that the IIS is modulated by calorie restriction and physical exercise. The IIS regulates activation of nitric oxide synthase (eNOS), the activity of which is essential to improving lifespan through calorie restriction, as demonstrated by experiments on eNOS knockout mice. Indeed, eNOS has a key role in maintaining vascular integrity during aging by activating vasorelaxation and allowing migration and angiogenesis. In this review, we will overview current literature on these topics and we will try to convince the reader of the importance of vascular integrity and nitric oxide production in determining healthy aging.
RESUMEN
The average life-span of the population of industrialized countries has improved enormously over the last decades. Despite evidence pointing to the role of food intake in modulating life-span, exceptional longevity is still considered primarily an inheritable trait, as pointed out by the description of families with centenarian clusters and by the elevated relative probability of siblings of centenarians to become centenarians themselves. However, rather than being two separate concepts, the genetic origin of exceptional longevity and the more recently observed environment-driven increase in the average age of the population could possibly be explained by the same genetic variants and environmentally modulated mechanisms (caloric restriction, specific nutrients). In support of this hypothesis, polymorphisms selected for in the centenarian population as a consequence of demographic pressure have been found to modulate cellular signals controlled also by caloric restriction. Here, we give an overview of the recent findings in the field of the genetics of human exceptional longevity, of how some of the identified polymorphisms modulate signals also influenced by food intake and caloric restriction, of what in our view have been the limitations of the approaches used over the past years to study genetics (sib-pair-, candidate gene association-, and genome-wide association-studies), and briefly of the limitations and the potential of the new, high-throughput, next-generation sequencing techniques applied to exceptional longevity.