Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Metabolites ; 10(11)2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33202828

RESUMEN

The success of antifungal therapies is often hindered by the limited number of available drugs. To close the gap in the antifungal pipeline, the search of novel leads is of primary importance, and here the exploration of neglected plants has great promise for the discovery of new principles. Through bioassay-guided isolation, uliginosin B and five new dimeric acylphloroglucinols (uliginosins C-D, and 3'prenyl uliginosins B-D), besides cembrenoids, have been isolated from the lipophilic extract of Hypericum mexicanum. Their structures were elucidated by a combination of Liquid Chromatography - Mass Spectrometry LC-MS and Nuclear Magnetic Resonance (NMR) measurements. The compounds showed strong anti-Candida activity, also against fluconazole-resistant strains, with fungal growth inhibition properties at concentrations ranging from 3 to 32 µM, and reduced or absent cytotoxicity against human cell lines. A chemogenomic screen of 3'prenyl uliginosin B revealed target genes that are important for cell cycle regulation and cytoskeleton assembly in fungi. Taken together, our study suggests dimeric acylphloroglucinols as potential candidates for the development of alternative antifungal therapies.

2.
Cell Death Differ ; 27(8): 2534, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32152554

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Cell Death Differ ; 27(5): 1588-1603, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31685979

RESUMEN

Heterozygous mutations of the lysosomal enzyme glucocerebrosidase (GBA1) represent the major genetic risk for Parkinson's disease (PD), while homozygous GBA1 mutations cause Gaucher disease, a lysosomal storage disorder, which may involve severe neurodegeneration. We have previously demonstrated impaired autophagy and proteasomal degradation pathways and mitochondrial dysfunction in neurons from GBA1 knockout (gba1-/-) mice. We now show that stimulation with physiological glutamate concentrations causes pathological [Ca2+]c responses and delayed calcium deregulation, collapse of mitochondrial membrane potential and an irreversible fall in the ATP/ADP ratio. Mitochondrial Ca2+ uptake was reduced in gba1-/- cells as was expression of the mitochondrial calcium uniporter. The rate of free radical generation was increased in gba1-/- neurons. Behavior of gba1+/- neurons was similar to gba1-/- in terms of all variables, consistent with a contribution of these mechanisms to the pathogenesis of PD. These data signpost reduced bioenergetic capacity and [Ca2+]c dysregulation as mechanisms driving neurodegeneration.


Asunto(s)
Calcio/metabolismo , Metabolismo Energético , Glucosilceramidasa/deficiencia , Neuronas/patología , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Encéfalo/patología , Radicales Libres/metabolismo , Glucosilceramidasa/metabolismo , Ácido Glutámico/toxicidad , Homeostasis/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neuronas/efectos de los fármacos , Receptores de Glutamato/metabolismo
4.
Cells ; 8(12)2019 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-31835444

RESUMEN

Anti-angiogenic therapy triggers metabolic alterations in experimental and human tumors, the best characterized being exacerbated glycolysis and lactate production. By using both Liquid Chromatography-Mass Spectrometry (LC-MS) and Nuclear Magnetic Resonance (NMR) analysis, we found that treatment of ovarian cancer xenografts with the anti-Vascular Endothelial Growth Factor (VEGF) neutralizing antibody bevacizumab caused marked alterations of the tumor lipidomic profile, including increased levels of triacylglycerols and reduced saturation of lipid chains. Moreover, transcriptome analysis uncovered up-regulation of pathways involved in lipid metabolism. These alterations were accompanied by increased accumulation of lipid droplets in tumors. This phenomenon was reproduced under hypoxic conditions in vitro, where it mainly depended from uptake of exogenous lipids and was counteracted by treatment with the Liver X Receptor (LXR)-agonist GW3965, which inhibited cancer cell viability selectively under reduced serum conditions. This multi-level analysis indicates alterations of lipid metabolism following anti-VEGF therapy in ovarian cancer xenografts and suggests that LXR-agonists might empower anti-tumor effects of bevacizumab.


Asunto(s)
Metabolismo de los Lípidos/efectos de los fármacos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Apoptosis/efectos de los fármacos , Benzoatos/uso terapéutico , Bencilaminas/uso terapéutico , Bevacizumab/uso terapéutico , Western Blotting , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Inmunohistoquímica , Espectroscopía de Resonancia Magnética , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Cell Rep ; 26(13): 3784-3797.e8, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30917329

RESUMEN

Skeletal muscle is composed of different myofiber types that preferentially use glucose or lipids for ATP production. How fuel preference is regulated in these post-mitotic cells is largely unknown, making this issue a key question in the fields of muscle and whole-body metabolism. Here, we show that microRNAs (miRNAs) play a role in defining myofiber metabolic profiles. mRNA and miRNA signatures of all myofiber types obtained at the single-cell level unveiled fiber-specific regulatory networks and identified two master miRNAs that coordinately control myofiber fuel preference and mitochondrial morphology. Our work provides a complete and integrated mouse myofiber type-specific catalog of gene and miRNA expression and establishes miR-27a-3p and miR-142-3p as regulators of lipid use in skeletal muscle.


Asunto(s)
MicroARNs/genética , Fibras Musculares Esqueléticas/metabolismo , Transcriptoma , Animales , Línea Celular , Células Cultivadas , Redes Reguladoras de Genes , Glucógeno/metabolismo , Glucólisis , Humanos , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/ultraestructura , Fosforilación Oxidativa
6.
Anal Bioanal Chem ; 409(24): 5661-5666, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28730308

RESUMEN

Direct coupling of thin-layer chromatography (TLC) with matrix-assisted laser desorption ionization (MALDI) mass spectrometry allows fast and detailed characterization of a large variety of analytes. The use of this technique, however, presents great challenges in semiquantitative applications because of the complex phenomena occurring at the TLC surface. In our laboratory, we recently observed that the ion intensities of several alkali adduct ions were significantly different between the top and interior layer of the TLC plate. This indicates that the integrity of the TLC surface can have an important effect on the reproducibility of TLC- MALDI analyses. Graphical Abstract MALDI imaging reveals that surface integrity affects the detection of alkali adductions in TLC-MALDI.

7.
Bioinformatics ; 33(2): 300-302, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27634947

RESUMEN

MOTIVATION: Labelling experiments in biology usually make use of isotopically enriched substrates, with the two most commonly employed isotopes for metabolism being 2H and 13C. At the end of the experiment some metabolites will have incorporated the labelling isotope, to a degree that depends on the metabolic turnover. In order to propose a meaningful biological interpretation, it is necessary to estimate the amount of labelling, and one possible route is to exploit the fact that MS isotopic patterns reflect the isotopic distributions. RESULTS: We developed the IsotopicLabelling R package, a tool able to extract and analyze isotopic patterns from liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-MS (GC-MS) data relative to labelling experiments. This package estimates the isotopic abundance of the employed stable isotope (either 2H or 13C) within a specified list of analytes. AVAILABILITY AND IMPLEMENTATION: The IsotopicLabelling R package is freely available at https://github.com/RuggeroFerrazza/IsotopicLabelling CONTACTS: r.ferrazza@unitn.itSupplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Cromatografía de Gases/métodos , Cromatografía Liquida/métodos , Marcaje Isotópico , Espectrometría de Masas/métodos , Programas Informáticos , Isótopos de Carbono/química , Isótopos de Carbono/metabolismo , Deuterio/química , Deuterio/metabolismo , Levaduras/metabolismo
8.
Biochem Biophys Res Commun ; 478(3): 1141-6, 2016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27539321

RESUMEN

Mutations in LRRK2 gene cause inherited Parkinson's disease (PD) and variations around LRRK2 act as risk factor for disease. Similar to sporadic disease, LRRK2-linked cases show late onset and, typically, the presence of proteinaceous inclusions named Lewy bodies (LBs) in neurons. Recently, defects on ceramide (Cer) metabolism have been recognized in PD. In particular, heterozygous mutations in the gene encoding for glucocerebrosidase (GBA1), a lysosomal enzyme converting glucosyl-ceramides (Glc-Cer) into Cer, increase the risk of developing PD. Although several studies have linked LRRK2 with membrane-related processes and autophagic-lysosomal pathway regulation, whether this protein impinges on the Cer pathway has not been addressed. Here, using a targeted lipidomics approach, we report an altered sphingolipid composition in Lrrk2(-/-) mouse brains. In particular, we observe a significant increase of Cer levels in Lrrk2(-/-) mice and direct effects on GBA1. Collectively, our results suggest a link between LRRK2 and Cer metabolism, providing new insights into the possible role of this protein in sphingolipids metabolism, with implications for PD therapeutics.


Asunto(s)
Encéfalo/metabolismo , Ceramidas/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/deficiencia , Animales , Regulación hacia Abajo , Glucosilceramidasa/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Esfingolípidos/metabolismo
9.
J Phys Chem B ; 118(25): 7147-55, 2014 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-24911963

RESUMEN

Vanillin (4-hydroxy-3-methoxybenzaldehyde) is a phenolic aldehyde with limited solubility in water; in this work, we investigate its self-aggregation, as well as its complexation equilibria with ß-cyclodextrin by using nuclear magnetic resonance (NMR) and vibrational spectroscopy. In particular, diffusion-ordered NMR (DOSY) measurements allowing to detect diffusional changes caused by aggregation/inclusion phenomena lead to a reliable estimate of the equilibrium constants of these processes, while Raman spectroscopy was used to further characterize some structural details of vanillin self-aggregates and inclusion complexes. Although the self-association binding constant of vanillin in water was found to be low (K(a) ∼10), dimeric species are not negligible within the investigated range of concentration (3-65 mM); on the other hand, formation of ß-cyclodextrin self-aggregates was not detected by DOSY measurements on aqueous solutions of ß-cyclodextrin at different concentrations (2-12 mM). Finally, the binding of vanillin with ß-cyclodextrin, as measured by the DOSY technique within a narrow range of concentrations (2-15 mM) by assuming the existence of only the monomeric 1:1 vanillin/ß-CD complex, was about an order of magnitude higher (K(c) ∼ 90) than self-aggregation. However, the value of the equilibrium constant for this complexation was found to be significantly affected by the analytical concentrations of the host and guest system, thus indicating that K(c) is an "apparent" equilibrium constant.


Asunto(s)
Benzaldehídos/química , beta-Ciclodextrinas/química , Difusión , Espectroscopía de Resonancia Magnética , Espectrometría Raman , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA