RESUMEN
Food allergy is a pathological condition caused by a disruption of oral tolerance. This condition leads to a pro-inflammatory environment that culminates in symptoms that varies from abdominal pain to anaphylaxis and death. The gold standard treatment consists of removing the food that triggers the allergy from diet. However, this conduct can cause nutritional impairment and social restrictions. Therefore, the need for new treatment strategies is notorious. In this context, probiotics are investigated due to their immunomodulatory mechanisms. Therefore, the objective of the present work is to investigate the probiotic potential of a mixture of four probiotic strains (Probiatop®) in an in vivo model of food allergy to ovalbumin (OVA). Our results demonstrated that oral administration of Probiatop® attenuated weight loss and diminished significantly anti-OVA IgE and IgG1 levels. Furthermore, it mitigated proximal jejunum injury, neutrophil recruitment and local IL17 levels. In addition, the probiotic mixture modulated positively the gut microbiota composition by decreasing the levels and frequency of Staphylococcus and yeast. In summary, our data suggest that Probiatop® has the potential to alleviate important symptoms of IgE-mediated food allergy, suggesting its probiotic potential as an adjuvant in the treatment of ovalbumin food allergy.
RESUMEN
Introduction: Corneal ulcers are common lesions in both human and veterinary medicine. However, only a few studies have evaluated the efficacy of cross-linked hyaluronic acid (X-HA) eye drops on corneal wound healing. To our knowledge, this is the first study to demonstrate and compare the efficacy of amniotic membrane extract eye drops (AMEED) and X-HA for corneal wound healing in rats. Material and methods: A total of 15 male Wistar rats (30 eyes) were used in this study. Then, 10 eyes were treated with X-HA, AMEED, or 0.9% saline. After general and topical anesthesia, a superficial corneal ulcer was created using a corneal trephine. The defect was further polished with a diamond burr. Three groups of 10 eyes each were treated with either one drop of 0.75% X-HA or AMEED or 0.9% saline (control), administered every 12 h for a duration of 72 h. The median epithelial defect area (MEDA), expressed as a percentage of the total corneal surface, was measured at 0, 12, 24, 36, 48, and 72 h. Re-epithelization time scores were also evaluated. The Kruskal-Wallis test was used to compare median times for re-epithelization and histopathologic scores between groups, while the Friedman test (for paired data) was employed to compare results from the serial analysis of MEDA and vascularization scores between groups. Results: MEDA was not significantly different between X-HA and AMEED. However, MEDA was significantly smaller in the X-HA group compared to the control group at 36 h (2.73 interquartile range (IQR) 5.52% x 9.95 IQR 9.10%, P=0.024) and 48 h (0.00 IQR 0.26% x 6.30 IQR 8.54%, P=0.030). The overall time for re-epithelization was significantly lower in the X-HA group (3.00 IQR 3.00) compared to the AMEED (6.5 IQR 3.00) and control (7.00 IQR 1.00) groups (P=0.035). Vascularization, hydropic degeneration, and epithelial-stromal separation were significantly less observed in samples in the X-HA-treated compared to samples in the AMEED- and saline-treated groups. Significantly more corneal epithelium cells were labeled for caspase3 in samples from the AMEED- and saline-treated groups compared to those from the X-HA-treated group. Discussion: Topical X-HA has been shown to accelerate corneal epithelial healing. AMEED did not decrease corneal re-epithelialization time. X-HA may also potentially be used as an adjunct therapy for treating corneal ulcers in clinical situations.
RESUMEN
Lactobacillus delbrueckii CIDCA 133 is a promising health-promoting bacterium shown to alleviate intestinal inflammation. However, the specific bacterial components responsible for these effects remain largely unknown. Here, we demonstrated that consuming extractable proteins from the CIDCA 133 strain effectively relieved acute ulcerative colitis in mice. This postbiotic protein fraction reduced the disease activity index and prevented colon shortening in mice. Furthermore, histological analysis revealed colitis prevention with reduced inflammatory cell infiltration into the colon mucosa. Postbiotic consumption also induced an immunomodulatory profile in colitic mice, as evidenced by both mRNA transcript levels (Tlr2, Nfkb1, Nlpr3, Tnf, and Il6) and cytokines concentration (IL1ß, TGFß, and IL10). Additionally, it enhanced the levels of secretory IgA, upregulated the transcript levels of tight junction proteins (Hp and F11r), and improved paracellular intestinal permeability. More interestingly, the consumption of postbiotic proteins modulated the gut microbiota (Bacteroides, Arkkemansia, Dorea, and Oscillospira). Pearson correlation analysis indicated that IL10 and IL1ß levels were positively associated with Bacteroides and Arkkemansia_Lactobacillus abundance. Our study reveals that CIDCA 133-derived proteins possess anti-inflammatory properties in colonic inflammation.
Asunto(s)
Antiinflamatorios , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Lactobacillus delbrueckii , Animales , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/química , Microbioma Gastrointestinal/efectos de los fármacos , Citocinas/metabolismo , Proteínas Bacterianas/farmacología , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Inflamatorias del Intestino/patología , Probióticos/farmacología , Mucosa Intestinal/microbiología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/patología , Colon/patología , Colon/microbiología , Colon/metabolismo , MasculinoRESUMEN
Dietary proteins are taken up by intestinal dendritic cells (DCs), cleaved into peptides, loaded to major histocompatibility complexes, and presented to T cells to generate an immune response. Amino acid (AA)-diets do not have the same effects because AAs cannot bind to major histocompatibility complex to activate T cells. Here, we show that impairment in regulatory T cell generation and loss of tolerance in mice fed a diet lacking whole protein is associated with major transcriptional changes in intestinal DCs including downregulation of genes related to DC maturation, activation and decreased gene expression of immune checkpoint molecules. Moreover, the AA-diet had a profound effect on microbiome composition, including an increase in Akkermansia muciniphilia and Oscillibacter and a decrease in Lactococcus lactis and Bifidobacterium. Although microbiome transfer experiments showed that AA-driven microbiome modulates intestinal DC gene expression, most of the unique transcriptional change in DC was linked to the absence of whole protein in the diet. Our findings highlight the importance of dietary proteins for intestinal DC function and mucosal tolerance.
Asunto(s)
Células Dendríticas , Proteínas en la Dieta , Microbioma Gastrointestinal , Homeostasis , Mucosa Intestinal , Animales , Ratones , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Microbioma Gastrointestinal/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Tolerancia Inmunológica , Linfocitos T Reguladores/inmunología , Ratones Endogámicos C57BL , Regulación de la Expresión Génica , Inmunidad MucosaRESUMEN
Members of the SOX (SRY-related HMG box) family of transcription factors are crucial for embryonic development and cell fate determination. This review investigates the role of SOX3 in cancer, as aberrations in SOX3 expression have been implicated in several cancers, including osteosarcoma, breast, esophageal, endometrial, ovarian, gastric, hepatocellular carcinomas, glioblastoma, and leukemia. These dysregulations modulate key cancer outcomes such as apoptosis, epithelial-mesenchymal transition (EMT), invasion, migration, cell cycle, and proliferation, contributing to cancer development. SOX3 exhibits varied expression patterns correlated with clinicopathological parameters in diverse tumor types. This review aims to elucidate the nuanced role of SOX3 in tumorigenesis, correlating its expression with clinical and pathological characteristics in cancer patients and cellular modelsBy providing a comprehensive exploration of SOX3 involvement in cancer, this review underscores the multifaceted role of SOX3 across distinct tumor types. The complexity uncovered in SOX3 function emphasizes the need for further research to unravel its full potential in cancer therapeutics.
Asunto(s)
Carcinogénesis , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Carcinogénesis/genética , Transición Epitelial-Mesenquimal/genética , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Regulación Neoplásica de la Expresión Génica , AnimalesRESUMEN
Chemotherapy-induced intestinal mucositis is a major side effect of cancer treatment. Statins are 3-hydroxy-3-methyl glutaryl coenzyme reductase inhibitors used to treat hypercholesterolemia and atherosclerotic diseases. Recent studies have demonstrated that atorvastatin (ATV) has antioxidant, anti-inflammatory, and resulting from the regulation of different molecular pathways. In the present study, we investigated the effects of ATV on intestinal homeostasis in 5-fluorouracil (5-FU)-induced mucositis. Our results showed that ATV protected the intestinal mucosa from epithelial damage caused by 5-FU mainly due to inflammatory infiltrate and intestinal permeability reduction, downregulation of inflammatory markers, such as Tlr4, MyD88, NF-κB, Tnf-a, Il1ß, and Il6 dose-dependent. ATV also improved epithelial barrier function by upregulating the mRNA transcript levels of mucin 2 (MUC2), and ZO-1 and occludin tight junction proteins. The results suggest that the ATV anti-inflammatory and protective effects on 5-FU-induced mice mucositis involve the inhibition of the TLR4/MYD88/NPRL3/NF-κB, iNos, and caspase 3.
RESUMEN
Lactobacillus delbrueckii subsp. lactis CIDCA 133 is a health-promoting bacterium that can alleviate gut inflammation and improve the epithelial barrier in a mouse model of mucositis. Despite these beneficial effects, the protective potential of this strain in other inflammation models, such as inflammatory bowel disease, remains unexplored. Herein, we examined for the first time the efficacy of Lactobacillus delbrueckii CIDCA 133 incorporated into a fermented milk formulation in the recovery of inflammation, epithelial damage, and restoration of gut microbiota in mice with dextran sulfate sodium-induced colitis. Oral administration of Lactobacillus delbrueckii CIDCA 133 fermented milk relieved colitis by decreasing levels of inflammatory factors (myeloperoxidase, N-acetyl-ß-D-glucosaminidase, toll-like receptor 2, nuclear factor-κB, interleukins 10 and 6, and tumor necrosis factor), secretory immunoglobulin A levels, and intestinal paracellular permeability. This immunobiotic also modulated the expression of tight junction proteins (zonulin and occludin) and the activation of short-chain fatty acids-related receptors (G-protein coupled receptors 43 and 109A). Colonic protection was effectively associated with acetate production and restoration of gut microbiota composition. Treatment with Lactobacillus delbrueckii CIDCA 133 fermented milk increased the abundance of Firmicutes members (Lactobacillus genus) while decreasing the abundance of Proteobacteria (Helicobacter genus) and Bacteroidetes members (Bacteroides genus). These promising outcomes influenced the mice's mucosal healing, colon length, body weight, and disease activity index, demonstrating that this immunobiotic could be explored as an alternative approach for managing inflammatory bowel disease.
Asunto(s)
Colitis , Productos Lácteos Cultivados , Sulfato de Dextran , Microbioma Gastrointestinal , Lactobacillus delbrueckii , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Colitis/microbiología , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/tratamiento farmacológico , Lactobacillus delbrueckii/metabolismo , Productos Lácteos Cultivados/microbiología , Ratones , Probióticos/uso terapéutico , Masculino , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Mucosa Intestinal/microbiología , Mucosa Intestinal/metabolismo , Inflamación , Colon/microbiología , Colon/metabolismo , LactobacillusRESUMEN
We studied some fibrotic aspects of chronic interstitial pneumonitis in the lungs of dogs infected with Leishmania infantum. The lungs of eleven naturally infected dogs, twelve experimentally infected with two distinct strains of L. infantum (BH401 and BH46), and six uninfected (controls) dogs, were analyzed by histological, parasitological, and immunohistochemical studies. Conventional histology (HE), collagen deposition (Gomori's silver staining for reticulin collagen fibers), and immunohistochemistry for myofibroblast characterization were carried out based on the cellular expression of alpha-smooth muscle actin, vimentin, cytokeratin, E-cadherin, snail antigen homologue 1 (SNAI1) (Snail), and the cytokine expression of transforming growth factor-beta (TGF-ß). Parasitological screening was carried out using conventional polymerase chain reaction (PCR) and the immunohistochemical reaction of streptavidin-peroxidase for visualizing Leishmania amastigotes. Dogs naturally infected with L. infantum and experimentally infected with L. infantum BH401 strains showed intense interstitial pneumonitis characterized by thickening of the alveolar septa as a consequence of an intense diffuse and focal (plaques) chronic exudate of mononuclear cells associated with fibrogenesis. The expression of alpha-actin, vimentin, and TGF-ß was higher in the lung interstitium of all infected dogs than in the other two groups (BH46 strain and controls). Moreover, in both the naturally and experimentally infected dog (BH401 strain) groups, the expression of Snail was moderate to intense in contrast to the other groups. Based on these immunohistochemical results, we concluded that mesenchymal cells are active in promoting changes in the extracellular matrix in the lungs of dogs naturally and experimentally infected with L. infantum, but it depends on the virulence of the parasite.
RESUMEN
Introduction and objective: p62 is a human multifunctional adaptor protein involved in key cellular processes such as tissue homeostasis, inflammation, and cancer. It acts as a negative regulator of inflammasome complexes. It may thus be considered a good candidate for therapeutic use in inflammatory bowel diseases (IBD), such as colitis. Probiotics, including recombinant probiotic strains producing or delivering therapeutic biomolecules to the host mucosal surfaces, could help prevent and mitigate chronic intestinal inflammation. The objective of the present study was to combine the intrinsic immunomodulatory properties of the probiotic Lactococcus lactis NCDO2118 with its ability to deliver health-promoting molecules to enhance its protective and preventive effects in the context of ulcerative colitis (UC). Material and methods: This study was realized in vivo in which mice were supplemented with the recombinant strain. The intestinal barrier function was analyzed by monitoring permeability, secretory IgA total levels, mucin expression, and tight junction genes. Its integrity was evaluated by histological analyses. Regarding inflammation, colonic cytokine levels, myeloperoxidase (MPO), and expression of key genes were monitored. The intestinal microbiota composition was investigated using 16S rRNA Gene Sequencing. Results and discussion: No protective effect of L. lactis NCDO2118 pExu:p62 was observed regarding mice clinical parameters compared to the L. lactis NCDO2118 pExu: empty. However, the recombinant strain, expressing p62, increased the goblet cell counts, upregulated Muc2 gene expression in the colon, and downregulated pro-inflammatory cytokines Tnf and Ifng when compared to L. lactis NCDO2118 pExu: empty and inflamed groups. This recombinant strain also decreased colonic MPO activity. No difference in the intestinal microbiota was observed between all treatments. Altogether, our results show that recombinant L. lactis NCDO2118 delivering p62 protein protected the intestinal mucosa and mitigated inflammatory damages caused by dextran sodium sulfate (DSS). We thus suggest that p62 may constitute part of a therapeutic approach targeting inflammation.
RESUMEN
Melanoma is the most aggressive and deadly skin cancer. The difficulty in its treatment arises from its ability to suppress the immune system, making it crucial to find a substance that increases anti-tumor immunity. C-phycocyanin (C-PC) appears as a promising bioactive, with multifaceted effects against several cancers, but its efficacy against melanoma has only been tested in vitro. Therefore, we investigated C-PC's the anti-tumor and immunomodulatory action in a murine melanoma model. The tumor was subcutaneously induced in C57BL/6 mice by injecting B16F10 cells. The animals were injected subcutaneously with C-PC for three consecutive days. After euthanasia, the tumor was weighed and measured. The inguinal lymph node was removed, and the cells were stained with antibodies and analyzed by flow cytometry. The heart, brain and lung were analyzed by histopathology. C-PC increased the B cell population of the inguinal lymph node in percentage and absolute number. The absolute number of T lymphocytes and myeloid cells were also increased in the groups treated with C-PC. Thus, C-PC showed a positive immunomodulatory effect both animals with and without tumor. However, this effect was more pronounced in the presence of the tumor. Positive immune system modulation may be associated with a reduction in tumor growth in animals treated with C-PC. Administration of C-PC subcutaneously did not cause organ damage. Our findings demonstrate C-PC's immunomodulatory and anti-melanoma action, paving the way for clinical research with this bioactive.
Asunto(s)
Melanoma , Neoplasias Cutáneas , Animales , Ratones , Ficocianina/farmacología , Ficocianina/uso terapéutico , Ratones Endogámicos C57BL , Neoplasias Cutáneas/tratamiento farmacológico , InmunomodulaciónRESUMEN
Mucositis is a high-incidence side effect in cancer patients undergoing chemotherapy. Next-generation probiotics are emerging as new therapeutic tools for managing various disorders. Studies have demonstrated the potential of Akkermansia muciniphila to increase the efficiency of anticancer treatment and to mitigate mucositis. Due to the beneficial effect of A. muciniphila on the host, we evaluated the dose-response, the microorganism viability, and the treatment protocol of A. muciniphila BAA-835 in a murine model of chemotherapy-induced mucositis. Female Balb/c mice were divided into groups that received either sterile 0.9% saline or A. muciniphila by gavage. Mucositis was induced using a single intraperitoneal injection of 5-fluorouracil. The animals were euthanized three days after the induction of mucositis, and tissue and blood were collected for analysis. Prevention of weight loss and small intestine shortening and reduction of neutrophil and eosinophil influx were observed when animals were pretreated with viable A. muciniphila at 1010 colony-forming units per mL (CFU/mL). The A. muciniphila improved mucosal damage by preserving tissue architecture and increasing villus height and goblet cell number. It also improved the integrity of the epithelial barrier, decreasing intestinal permeability and bacterial translocation. In addition, the treatment prevented the expansion of Enterobacteriaceae. The immunological parameters were also improved by decreasing the expression of pro-inflammatory cytokines (IL6, IL1ß, and TNF) and increasing IL10. In conclusion, pretreatment with 1010 CFU/mL of viable A. muciniphila effectively controlled inflammation, protected the intestinal mucosa and the epithelial barrier, and prevented Enterobacteriaceae expansion in treated mice.
Asunto(s)
Antineoplásicos , Mucositis , Humanos , Ratones , Femenino , Animales , Mucositis/inducido químicamente , Mucositis/tratamiento farmacológico , Mucositis/metabolismo , Citocinas/metabolismo , Mucosa Intestinal/metabolismo , Antineoplásicos/farmacología , AkkermansiaRESUMEN
BACKGROUND: Probiotics have gained attention for their potential maintaining gut and immune homeostasis. They have been found to confer protection against pathogen colonization, possess immunomodulatory effects, enhance gut barrier functionality, and mitigate inflammation. However, a thorough understanding of the unique mechanisms of effects triggered by individual strains is necessary to optimize their therapeutic efficacy. Probiogenomics, involving high-throughput techniques, can help identify uncharacterized strains and aid in the rational selection of new probiotics. This study evaluates the potential of the Escherichia coli CEC15 strain as a probiotic through in silico, in vitro, and in vivo analyses, comparing it to the well-known probiotic reference E. coli Nissle 1917. Genomic analysis was conducted to identify traits with potential beneficial activity and to assess the safety of each strain (genomic islands, bacteriocin production, antibiotic resistance, production of proteins involved in host homeostasis, and proteins with adhesive properties). In vitro studies assessed survival in gastrointestinal simulated conditions and adhesion to cultured human intestinal cells. Safety was evaluated in BALB/c mice, monitoring the impact of E. coli consumption on clinical signs, intestinal architecture, intestinal permeability, and fecal microbiota. Additionally, the protective effects of both strains were assessed in a murine model of 5-FU-induced mucositis. RESULTS: CEC15 mitigates inflammation, reinforces intestinal barrier, and modulates intestinal microbiota. In silico analysis revealed fewer pathogenicity-related traits in CEC15, when compared to Nissle 1917, with fewer toxin-associated genes and no gene suggesting the production of colibactin (a genotoxic agent). Most predicted antibiotic-resistance genes were neither associated with actual resistance, nor with transposable elements. The genome of CEC15 strain encodes proteins related to stress tolerance and to adhesion, in line with its better survival during digestion and higher adhesion to intestinal cells, when compared to Nissle 1917. Moreover, CEC15 exhibited beneficial effects on mice and their intestinal microbiota, both in healthy animals and against 5FU-induced intestinal mucositis. CONCLUSIONS: These findings suggest that the CEC15 strain holds promise as a probiotic, as it could modulate the intestinal microbiota, providing immunomodulatory and anti-inflammatory effects, and reinforcing the intestinal barrier. These findings may have implications for the treatment of gastrointestinal disorders, particularly some forms of diarrhea.
Asunto(s)
Proteínas de Escherichia coli , Mucositis , Probióticos , Ratones , Humanos , Animales , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Inflamación , Probióticos/uso terapéuticoRESUMEN
Intestinal mucositis is a commonly reported side effect in oncology patients undergoing chemotherapy and radiotherapy. Probiotics, prebiotics, and synbiotics have been investigated as alternative therapeutic approaches against intestinal mucositis due to their well-known anti-inflammatory properties and health benefits to the host. Previous studies showed that the potential probiotic Lactobacillus delbrueckii CIDCA 133 and the prebiotic Fructooligosaccharides (FOS) alleviated the 5-Fluorouracil (5-FU) chemotherapy-induced intestinal mucosa damage. Based on these previous beneficial effects, this work evaluated the anti-inflammatory property of the synbiotic formulation containing L. delbrueckii CIDCA 133 and FOS in mice intestinal mucosa inflammation induced by 5-FU. This work showed that the synbiotic formulation was able to modulate inflammatory parameters, including reduction of cellular inflammatory infiltration, gene expression downregulation of Tlr2, Nfkb1, and Tnf, and upregulation of the immunoregulatory Il10 cytokine, thus protecting the intestinal mucosa from epithelial damage caused by the 5-FU. The synbiotic also improved the epithelial barrier function by upregulating mRNA transcript levels of the short chain fatty acid (SCFA)-associated GPR43 receptor and the occludin tight junction protein, with the subsequent reduction of paracellular intestinal permeability. The data obtained showed that this synbiotic formulation could be a promising adjuvant treatment to be explored against inflammatory damage caused by 5-FU chemotherapy.
Asunto(s)
Antineoplásicos , Lactobacillus delbrueckii , Mucositis , Probióticos , Simbióticos , Ratones , Animales , Mucositis/inducido químicamente , Mucositis/tratamiento farmacológico , Mucositis/prevención & control , Probióticos/farmacología , Mucosa Intestinal , Prebióticos/efectos adversos , Fluorouracilo/efectos adversos , Antineoplásicos/farmacologíaRESUMEN
Mucositis is an inflammation of the gastrointestinal mucosa that debilitate the quality of life of patients undergoing chemotherapy treatments. In this context, antineoplastic drugs, such as 5-fluorouracil, provokes ulcerations in the intestinal mucosa that lead to the secretion of pro-inflammatory cytokines by activating the NF-κB pathway. Alternative approaches to treat the disease using probiotic strains show promising results, and thereafter, treatments that target the site of inflammation could be further explored. Recently, studies reported that the protein GDF11 has an anti-inflammatory role in several diseases, including in vitro and in vivo results in different experimental models. Hence, this study evaluated the anti-inflammatory effect of GDF11 delivered by Lactococcus lactis strains NCDO2118 and MG1363 in a murine model of intestinal mucositis induced by 5-FU. Our results showed that mice treated with the recombinant lactococci strains presented improved histopathological scores of intestinal damage and a reduction of goblet cell degeneration in the mucosa. It was also observed a significant reduction of neutrophil infiltration in the tissue in comparison to positive control group. Moreover, we observed immunomodulation of inflammatory markers Nfkb1, Nlrp3, Tnf, and upregulation of Il10 in mRNA expression levels in groups treated with recombinant strains that help to partially explain the ameliorative effect in the mucosa. Therefore, the results found in this study suggest that the use of recombinant L. lactis (pExu:gdf11) could offer a potential gene therapy for intestinal mucositis induced by 5-FU.
RESUMEN
Selenium (Se) is an essential micronutrient known to play an important role in the antioxidant system that can potentially influence tumor growth. We aimed to investigate the effects of dietary Se supplementation after detection of 4T1 mammary tumor growth in BALB/c mice. Thirty female mice received subcutaneous inoculation of 4T1 cells. After five days, all animals presenting palpable tumors were randomly assigned to three groups: a control group (Se-control) receiving a diet with adequate Se (0.15 mg/kg) and two other groups that received Se-supplemented diets (1.4 mg/kg of total Se) with either Brazilian nuts (Se-Nuts) or selenomethionine (SeMet). Data were assessed by either One or Two-way ANOVA followed by Tukey's HSD or Bonferroni's post hoc tests, respectively. Both Se-supplemented diets reduced tumor volume from the thirteenth day of feeding compared with the Se-adequate (control) diet (p < 0.05). The SeMet group presented a higher Se blood concentration (p < 0.05) than the Se-control group, with the Se-Nuts group presenting intermediate values. Selenoprotein P gene expression in the liver was higher in the Se-Nuts group than in the Se-control group (p < 0.05), while the SeMet group presented intermediate expression. Dietary Se supplementation, starting after detection of 4T1 palpable lesions, reduced tumor volume in mice.
Asunto(s)
Bertholletia , Neoplasias Mamarias Animales , Selenio , Femenino , Animales , Ratones , Selenio/farmacología , Selenometionina/farmacología , Suplementos Dietéticos , Dieta , Neoplasias Mamarias Animales/tratamiento farmacológicoRESUMEN
Beneficial effects of Lactiplantibacillus plantarum strains have been widely reported. Knowing that the effects of probiotic bacteria are strain-dependent, this study aimed to characterize the probiotic properties and investigate the gastrointestinal protective effects of nine novel L. plantarum strains isolated from Bahia, Brazil. The probiotic functionality was first evaluated in vitro by characterizing bile salt and acidic tolerance, antibacterial activity, and adhesion to Caco-2 cells. Antibiotic resistance profile, mucin degradation, and hemolytic activity assays were also performed to evaluate safety features. In vivo analyses were conducted to investigate the anti-inflammatory effects of the strains on a mouse model of 5-Fluorouracil-induced mucositis. Our results suggest that the used L. plantarum strains have good tolerance to bile salts and low pH and can inhibit commonly gastrointestinal pathogens. Lp2 and Lpl1 strains also exhibited high adhesion rates to Caco-2 cells (13.64 and 9.05%, respectively). Phenotypical resistance to aminoglycosides, vancomycin, and tetracycline was observed for most strains. No strain showed hemolytic or mucolytic activity. Seven strains had a protective effect against histopathological and inflammatory damage induced by 5-FU. Gene expression analysis of inflammatory markers showed that five strains upregulated interleukin 10 (Il10), while four downregulated both interleukin 6 (Il6) and interleukin 1b (Il1b). Additionally, all strains reduced eosinophilic and neutrophilic infiltration; however, they could not prevent weight loss or reduced liquid/ food intake. Altogether, our study suggests these Brazilian L. plantarum strains present good probiotic characteristics and safety levels for future applications and can be therapeutically adjuvant alternatives to prevent/treat intestinal mucositis.
Asunto(s)
Lactobacillus plantarum , Mucositis , Probióticos , Animales , Humanos , Ratones , Antibacterianos/metabolismo , Brasil , Células CACO-2 , Fluorouracilo , Lactobacillaceae , Lactobacillus plantarum/metabolismo , Probióticos/farmacologíaRESUMEN
Melanoma is an aggressive cancer with fast metastatic spread and reduced survival time. One common event during the neoplastic progression is the epithelial-mesenchymal transition (EMT), which enhances invasiveness, cell migration, and metastasis. In this study, we investigated the effects of metformin at EMT in melanoma cell lines B16-F10 and A-375, in vitro, and the impact of EMT downregulation on melanoma progression in vivo. The metformin cells treatment reduces the migration potential in vitro and reduced the development of pulmonary metastases and the expressions of N-cadherin, vimentin, ZEB1, and ZEB2 at the metastases site, in vivo. These results indicate that metformin can promote EMT downregulation impairing the metastatic potential of melanoma cells.
Asunto(s)
Neoplasias Pulmonares , Melanoma , Metformina , Ratones , Humanos , Animales , Transición Epitelial-Mesenquimal , Vimentina , Metformina/farmacología , Metformina/uso terapéutico , Invasividad Neoplásica/patología , Modelos Animales de Enfermedad , Melanoma/patología , Movimiento Celular , Neoplasias Pulmonares/metabolismo , Cadherinas/metabolismo , Línea Celular TumoralRESUMEN
BACKGROUND: Sex-determining region Y-box 3 (SOX3) protein, a SOX transcriptions factors group, has been identified as a key regulator in several diseases, including cancer. Downregulation of transcriptions factors in invasive ductal carcinoma (IDC) can interfere in neoplasia development, increasing its aggressiveness. We investigated SOX3 protein expression and its correlation with apoptosis in the MDA-MB-231 cell line, as SOX3 and Pro-Caspase-3 immunoexpression in paraffin-embedded invasive ductal carcinoma tissue samples from patients (n = 27). Breast cancer cell line MDA-MD-231 transfected with pEF1-SOX3 + and pEF1-Empty vector followed by cytotoxicity assay (MTT), Annexin-V FITC PI for apoptosis percentage assessment by flow cytometry, qPCR for apoptotic-related gene expression, immunofluorescence, and immunohistochemistry to SOX3 immunolocalization in culture cells, and paraffin-embedded invasive ductal carcinoma tissue samples. RESULTS: Apoptotic rate was higher in cells transfected with pEF1-SOX3 + (56%) than controls (10%). MDA-MB-231 transfected with pEF1-SOX3 + presented upregulation of pro-apoptotic mRNA from CASP3, CASP8, CASP9, and BAX genes, contrasting with downregulation antiapoptotic mRNA from BCL2, compared to non-transfected cells and cells transfected with pEF1-empty vector (p < 0.005). SOX3 protein nuclear expression was detected in 14% (4/27 cases) of ductal carcinoma cases, and pro-Caspase-3 expression was positive in 50% of the cases. CONCLUSION: Data suggest that SOX3 transcription factor upregulates apoptosis in breast cancer cell line MDA-MB-231, and has a down nuclear expression in ductal carcinoma cases, and need to be investigated as a tumor suppressor protein, and its loss of expression and non-nuclear action turn the cells resistant to apoptosis. Further studies are necessary to understand how SOX3 protein regulates the promoter regions of genes involved in apoptosis.
Asunto(s)
Neoplasias de la Mama , Carcinoma Ductal de Mama , Neoplasias de la Mama/genética , Carcinoma Ductal de Mama/genética , Caspasa 3 , Femenino , Fluoresceína-5-Isotiocianato , Humanos , ARN Mensajero , Factores de Transcripción SOXB1 , Proteínas Supresoras de Tumor , Regulación hacia Arriba , Proteína X Asociada a bcl-2RESUMEN
Intestinal mucositis is a commonly reported side effect in oncology practice. Probiotics are considered an excellent alternative therapeutic approach to this debilitating condition; however, there are safety questions regarding the viable consumption of probiotics in clinical practice due to the risks of systemic infections, especially in immune-compromised patients. The use of heat-killed or cell-free supernatants derived from probiotic strains has been evaluated to minimize these adverse effects. Thus, this work evaluated the anti-inflammatory properties of paraprobiotics (heat-killed) and postbiotics (cell-free supernatant) of the probiotic Lactobacillus delbrueckii CIDCA 133 strain in a mouse model of 5-Fluorouracil drug-induced mucositis. Administration of paraprobiotics and postbiotics reduced the neutrophil cells infiltrating into the small intestinal mucosa and ameliorated the intestinal epithelium architecture damaged by 5-FU. These ameliorative effects were associated with a downregulation of inflammatory markers (Tlr2, Nfkb1, Il12, Il17a, Il1b, Tnf), and upregulation of immunoregulatory Il10 cytokine and the epithelial barrier markers Ocln, Cldn1, 2, 5, Hp and Muc2. Thus, heat-killed L. delbrueckii CIDCA 133 and supernatants derived from this strain were shown to be effective in reducing 5-FU-induced inflammatory damage, demonstrating them to be an alternative approach to the problems arising from the use of live beneficial microorganisms in clinical practice.