Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 3536, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35725983

RESUMEN

Transparent conducting oxides exhibit giant optical nonlinearities in the near-infrared window where their linear index approaches zero. Despite the magnitude and speed of these nonlinearities, a "killer" optical application for these compounds has yet to be found. Because of the absorptive nature of the typically used intraband transitions, out-of-plane configurations with short optical paths should be considered. In this direction, we propose an alternative frequency-resolved optical gating scheme for the characterization of ultra-fast optical pulses that exploits near-zero-index aluminium zinc oxide thin films. Besides the technological advantages in terms of manufacturability and cost, our system outperforms commercial modules in key metrics, such as operational bandwidth, sensitivity, and robustness. The performance enhancement comes with the additional benefit of simultaneous self-phase-matched second and third harmonic generation. Because of the fundamental importance of novel methodologies to characterise ultra-fast events, our solution could be of fundamental use for numerous research labs and industries.

2.
Opt Lett ; 46(21): 5433-5436, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34724494

RESUMEN

Optical nonlinearities can be strongly enhanced by operating in the so-called near-zero-index (NZI) regime, where the real part of the refractive index of the system under investigation approaches zero. Here we experimentally demonstrate semi-degenerate four-wave mixing (FWM) in aluminum zinc oxide thin films generating radiation tunable in the visible spectral region, where the material is highly transparent. To this end, we employed an intense pump (787 nm) and a seed tunable in the NIR window (1100-1500 nm) to generate a visible idler wave (530-620 nm). Experiments show enhancement of the frequency conversion efficiency with a maximum of 2% and a signal-to-pump detuning of 360 nm. Effective idler wavelength tuning has also been demonstrated by operating on the temporal delay between the pump and signal.

3.
Micromachines (Basel) ; 11(1)2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-31968578

RESUMEN

Interferometric effects between two counter-propagating beams incident on an optical system can lead to a coherent modulation of the absorption of the total electromagnetic radiation with 100% efficiency even in deeply subwavelength structures. Coherent perfect absorption (CPA) rises from a resonant solution of the scattering matrix and often requires engineered optical properties. For instance, thin film CPA benefits from complex nanostructures with suitable resonance, albeit at a loss of operational bandwidth. In this work, we theoretically and experimentally demonstrate a broadband CPA based on light-with-light modulation in epsilon-near-zero (ENZ) subwavelength films. We show that unpatterned ENZ films with different thicknesses exhibit broadband CPA with a near-unity maximum value located at the ENZ wavelength. By using Kerr optical nonlinearities, we dynamically tune the visibility and peak wavelength of the total energy modulation. Our results based on homogeneous thick ENZ media open a route towards on-chip devices that require efficient light absorption and dynamical tunability.

4.
Phys Rev Lett ; 120(4): 043902, 2018 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-29437435

RESUMEN

Materials with a spatially uniform but temporally varying optical response have applications ranging from magnetic field-free optical isolators to fundamental studies of quantum field theories. However, these effects typically become relevant only for time variations oscillating at optical frequencies, thus presenting a significant hurdle that severely limits the realization of such conditions. Here we present a thin-film material with a permittivity that pulsates (uniformly in space) at optical frequencies and realizes a time-reversing medium of the form originally proposed by Pendry [Science 322, 71 (2008)SCIEAS0036-807510.1126/science.1162087]. We use an optically pumped, 500 nm thick film of epsilon-near-zero (ENZ) material based on Al-doped zinc oxide. An incident probe beam is both negatively refracted and time reversed through a reflected phase-conjugated beam. As a result of the high nonlinearity and the refractive index that is close to zero, the ENZ film leads to time reversed beams (simultaneous negative refraction and phase conjugation) with near-unit efficiency and greater-than-unit internal conversion efficiency. The ENZ platform therefore presents the time-reversal features required, e.g., for efficient subwavelength imaging, all-optical isolators and fundamental quantum field theory studies.

5.
Nano Lett ; 18(2): 740-746, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29283583

RESUMEN

Fabry-Pérot metal-insulator-metal (MIM) nanocavities are widely used in nanophotonic applications due to their extraordinary electromagnetic properties and deeply subwavelength dimensions. However, the spectral response of nanocavities is usually controlled by the spatial separation between the two reflecting mirrors and the spacer's refractive index. Here, we demonstrate static and dynamic control of Fabry-Pérot nanocavities by inserting a plasmonic metasurface, as a passive element, and a gallium doped-zinc oxide (Ga:ZnO) layer as a dynamically tunable component within the nanocavities' spacer. Specifically, by changing the design of the silver (Ag) metasurface one can "statically" tailor the nanocavity response, tuning the resonance up to 200 nm. To achieve the dynamic tuning, we utilize the large nonlinear response of the Ga:ZnO layer near the epsilon near zero wavelength to enable effective subpicosecond (<400 fs) optical modulation (80%) at reasonably low pump fluence levels (9 mJ/cm2). We demonstrate a 15 nm red shift of a near-infrared Fabry-Pérot resonance (λ ≅ 1.16 µm) by using a degenerate pump probe technique. We also study the carrier dynamics of Ga:ZnO under intraband photoexcitation via the electronic band structure calculated from first-principles density functional method. This work provides a versatile approach to design metal nanocavities by utilizing both the phase variation with plasmonic metasurfaces and the strong nonlinear response of metal oxides. Tailorable and dynamically controlled nanocavities could pave the way to the development of the next generation of ultrafast nanophotonic devices.

6.
Adv Mater ; 29(19)2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28318121

RESUMEN

The field of nanophotonics has ushered in a new paradigm of light manipulation by enabling deep subdiffraction confinement assisted by metallic nanostructures. However, a key limitation which has stunted a full development of high-performance nanophotonic devices is the typical large losses associated with the constituent metals. Although silver has long been known as the highest quality plasmonic material for visible and near infrared applications, its usage has been limited due to practical issues of continuous thin film formation, stability, adhesion, and surface roughness. Recently, a solution is proposed to the above issues by doping a proper amount of aluminum during silver deposition. In this work, the potential of doped silver for nanophotonic applications is presented by demonstrating several high-performance key nanophotonic devices. First, long-range surface plasmon polariton waveguides show propagation distances of a few centimeters. Second, hyperbolic metamaterials consisting of ultrathin Al-doped Ag films are attained having a homogeneous and low-loss response, and supporting a broad range of high-k modes. Finally, transparent conductors based on Al-doped Ag possess both a high and flat transmittance over the visible and near-IR range.

7.
Nat Commun ; 6: 8236, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26364999

RESUMEN

Nonlinear optical processes are one of the most important tools in modern optics with a broad spectrum of applications in, for example, frequency conversion, spectroscopy, signal processing and quantum optics. For practical and ultimately widespread implementation, on-chip devices compatible with electronic integrated circuit technology offer great advantages in terms of low cost, small footprint, high performance and low energy consumption. While many on-chip key components have been realized, to date polarization has not been fully exploited as a degree of freedom for integrated nonlinear devices. In particular, frequency conversion based on orthogonally polarized beams has not yet been demonstrated on chip. Here we show frequency mixing between orthogonal polarization modes in a compact integrated microring resonator and demonstrate a bi-chromatically pumped optical parametric oscillator. Operating the device above and below threshold, we directly generate orthogonally polarized beams, as well as photon pairs, respectively, that can find applications, for example, in optical communication and quantum optics.

8.
Nano Lett ; 15(1): 498-505, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25458533

RESUMEN

Hyperbolic metamaterials (HMMs) have shown great promise in the optical and quantum communities due to their extremely large, broadband photonic density of states. This feature is a direct consequence of supporting photonic modes with unbounded k-vectors. While these materials support such high-k waves, they are intrinsically confined inside the HMM and cannot propagate into the far-field, rendering them impractical for many applications. Here, we demonstrate how the magnitude of k-vectors can be engineered as the propagating radiation passes through media of differing dispersion relations (including type II HMMs and dielectrics) in the in-plane direction. The total outcoupling efficiency of waves in the in-plane direction is shown to be on average 2 orders of magnitude better than standard out-of-plane outcoupling methods. In addition, the outcoupling can be further enhanced using a proposed tapered HMM waveguide that is fabricated using a shadowed glancing angle deposition technique; thereby proving the feasibility of the proposed device. Applications for this technique include converting high-k waves to low-k waves that can be out-coupled into free-space and creating extremely high-k waves that are quickly quenched. Most importantly, this method of in-plane outcoupling acts as a bridge through which waves can cross between the regimes of low-k waves in classical dielectric materials and the high-k waves in HMMs with strongly reduced reflective losses.

9.
Opt Express ; 22(18): 21488-98, 2014 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-25321527

RESUMEN

We report an integrated all-optical radio frequency spectrum analyzer based on a ~4 cm long doped silica glass waveguide, with a bandwidth greater than 2.5 THz. We use this device to characterize the intensity power spectrum of ultrahigh repetition rate mode-locked lasers at repetition rates up to 400 GHz, and observe dynamic noise related behavior not observable with other techniques.

10.
Opt Express ; 22(19): 22340-8, 2014 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-25321706

RESUMEN

We demonstrate, by generating a THz electric field directly within the guiding structure, an active two-wire waveguide operating in the terahertz (THz) range of wavelengths. We compare the energy throughput of the active configuration with that of a radiatively coupled semi-large photoconductive antenna, in which the radiation is generated outside the waveguide, reporting a 60 times higher energy throughput for the same illumination power and applied voltage. This novel, active waveguide design allows to have efficient coupling of the THz radiation in a dispersion-less waveguide without the need of involved radiative coupling geometries.


Asunto(s)
Diseño Asistido por Computadora , Luz , Iluminación/instrumentación , Dispersión de Radiación , Resonancia por Plasmón de Superficie/instrumentación , Diseño de Equipo , Radiación Terahertz
11.
Opt Express ; 22(6): 6535-46, 2014 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-24664002

RESUMEN

We report an integrated photon pair source based on a CMOS-compatible microring resonator that generates multiple, simultaneous, and independent photon pairs at different wavelengths in a frequency comb compatible with fiber communication wavelength division multiplexing channels (200 GHz channel separation) and with a linewidth that is compatible with quantum memories (110 MHz). It operates in a self-locked pump configuration, avoiding the need for active stabilization, making it extremely robust even at very low power levels.

12.
Opt Express ; 21(22): 27326-37, 2013 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-24216955

RESUMEN

We propose several planar layouts of ultra-compact plasmonic modulators that utilize alternative plasmonic materials such as transparent conducting oxides and titanium nitride. The modulation is achieved by tuning the carrier concentration in a transparent conducting oxide layer into and out of the plasmon resonance with an applied electric field. The resonance significantly increases the absorption coefficient of the modulator, which enables larger modulation depth. We show that an extinction ratio of 46 dB/µm can be achieved, allowing for a 3-dB modulation depth in much less than one micron at the telecommunication wavelength. Our multilayer structures can be integrated with existing plasmonic and photonic waveguides as well as novel semiconductor-based hybrid photonic/electronic circuits.

13.
Opt Express ; 21(11): 13333-41, 2013 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-23736585

RESUMEN

We report a novel geometry for OPOs based on nonlinear microcavity resonators. This approach relies on a self-locked scheme that enables OPO emission without the need for thermal locking of the pump laser to the microcavity resonance. By exploiting a CMOS-compatible microring resonator, we achieve oscillation featured by a complete absence of "shutting down", i.e. the self-terminating behavior that is a very common and detrimental occurrence in externally pumped OPOs. Further, our scheme consistently produces very wide bandwidth (>300nm, limited by our experimental set-up) combs that oscillate at a spacing equal to the FSR of the micro cavity resonance.

14.
Opt Lett ; 38(2): 154-6, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23454946

RESUMEN

We experimentally demonstrate a new optical filter design based on a vertically coupled photonic crystal (PhC) cavity and a bus waveguide monolithically integrated on the silicon-on-insulator platform. The use of a vertically coupled waveguide gives flexibility in the choice of the waveguide material and dimensions, dramatically lowering the insertion loss while achieving very high coupling efficiencies to wavelength scale resonators and thus allows the creation of PhC-based optical filters with very high extinction ratio (>10 dB).

15.
Opt Express ; 19(23): 23153-61, 2011 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-22109195

RESUMEN

We demonstrate all-optical temporal integration of arbitrary optical waveforms with temporal features as short as ~1.9ps. By using a four-port micro-ring resonator based on CMOS compatible doped glass technology we perform the 1st- and 2nd-order cumulative time integral of optical signals over a bandwidth that exceeds 400GHz. This device has applications for a wide range of ultra-fast data processing and pulse shaping functions as well as in the field of optical computing for the real-time analysis of differential equations.

16.
Opt Express ; 18(8): 7625-33, 2010 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-20588602

RESUMEN

Photonic integrated circuits (PICs) capable of ultra-fast, signal processing are recognized as being fundamental for future applications involving ultra-short optical pulse propagation, including the ability to meet the exponentially growing global fiber-optic telecommunications bandwidth demand. Integrated all-optical signal processors would carry substantial benefits in terms of performance, cost, footprint, and energy efficiency. Here, we demonstrate an optical pulse compressor based on an integrated nonlinear chirper, capable of operating on a sub-picosecond (> 1Tb/s) time scale. It is CMOS compatible and based on a 45cm long, high index doped silica glass waveguide we achieve pulse compression at relatively low input peak powers, due to the high nonlinearity and low linear and nonlinear losses of the device. The flexibility of this platform in terms of nonlinearity and dispersion allows the implementation of several compression schemes.

17.
Opt Express ; 18(2): 923-30, 2010 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-20173914

RESUMEN

We demonstrate supercontinuum (SC) generation at both 1550 nm and 1288 nm in a compact (< 5mm(2)) 45 cm spiral waveguide composed of CMOS-compatible doped high-index glass. While both wavelengths have weak dispersion and are near zero dispersion points, they present different symmetries. At 1550 nm, the normal dispersion regime takes place at longer wavelengths, whereas at 1290 nm it is at shorter wavelengths, and we observe features in the SC spectra that clearly reflect this. In particular, the spectrum at 1550 nm is more than 300 nm wide (limited by detection) and is well reproduced by simulations based on the measured dispersion. This work represents a practical on-chip broadband wavelength source with potential use in many important applications.


Asunto(s)
Vidrio/química , Dispositivos Ópticos , Refractometría/instrumentación , Dióxido de Silicio/química , Transductores , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Ensayo de Materiales , Dispersión de Radiación
18.
Opt Express ; 17(17): 15128-33, 2009 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-19687990

RESUMEN

Ca(0.28)Ba(0.72)Nb(2)O(6) (CBN-28) waveguides based on thin film technology were fabricated on SiO(2)/(100) Si substrates. By using X-ray diffraction, we confirmed the preferential c-axis orientation of the CBN structures. An effective unclamped electro-optic r33 coefficient of 12 pm/V was measured in CBN thin films by using an ellipsometric technique in reflection geometry. In addition, by means of a Fabry-Perot technique, the propagation losses of our strip loaded waveguides were estimated to be as low as 4.8 dB/cm and 6.5 dB/cm at telecommunication wavelengths for the fundamental TE and TM modes, respectively.

19.
Opt Express ; 17(3): 1865-70, 2009 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-19189017

RESUMEN

We demonstrate efficient self phase modulation, as well as negligible nonlinear absorption, in low loss (<0.06 dB/cm), high index silica glass-based waveguides. Using approximately 1 ps pulses near 1560 nm we achieve a 1.5pi nonlinear phase shift in an integrated 45 cm long spiral waveguide with <60 W of peak input power, corresponding to a large nonlinearity (gamma) of 220 W(-1)km(-1). Further, we observe negligible nonlinear absorption for input intensities > 25 GW/cm(2). The high nonlinearity and low linear and nonlinear losses of these waveguides make them promising for nonlinear all-optical signal processing applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA