Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 290(2009): 20231563, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37876192

RESUMEN

Members of the phylum Cnidaria include sea anemones, corals and jellyfish, and have successfully colonized both marine and freshwater habitats throughout the world. The understanding of how cnidarians adapt to extreme environments such as the dark, high-pressure deep-sea habitat has been hindered by the lack of genomic information. Here, we report the first chromosome-level deep-sea cnidarian genome, of the anemone Actinernus sp., which was 1.39 Gbp in length and contained 44 970 gene models including 14 806 tRNA genes and 30 164 protein-coding genes. Analyses of homeobox genes revealed the longest chromosome hosts a mega-array of Hox cluster, HoxL, NK cluster and NKL homeobox genes; until now, such an array has only been hypothesized to have existed in ancient ancestral genomes. In addition to this striking arrangement of homeobox genes, analyses of microRNAs revealed cnidarian-specific complements that are distinctive for nested clades of these animals, presumably reflecting the progressive evolution of the gene regulatory networks in which they are embedded. Also, compared with other sea anemones, circadian rhythm genes were lost in Actinernus sp., which likely reflects adaptation to living in the dark. This high-quality genome of a deep-sea cnidarian thus reveals some of the likely molecular adaptations of this ecologically important group of metazoans to the extreme deep-sea environment. It also deepens our understanding of the evolution of genome content and organization of animals in general and cnidarians in particular, specifically from the viewpoint of key developmental control genes like the homeobox-encoding genes, where we find an array of genes that until now has only been hypothesized to have existed in the ancient ancestor that pre-dated both the cnidarians and bilaterians.


Asunto(s)
Cnidarios , Anémonas de Mar , Animales , Anémonas de Mar/genética , Genes Homeobox , Filogenia , Evolución Molecular , Familia de Multigenes
2.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1868(10): 159377, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37517549

RESUMEN

Aquatic single-cell organisms have long been believed to be unique primary producers of omega-3 long-chain (≥C20) polyunsaturated fatty acids (ω3 LC-PUFA). Multiple invertebrates including annelids have been discovered to possess methyl-end desaturases enabling key steps in the de novo synthesis of ω3 LC-PUFA, and thus potentially contributing to their production in the ocean. Along methyl-end desaturases, the repertoire and function of further LC-PUFA biosynthesising enzymes is largely missing in Annelida. In this study we examined the front-end desaturase gene repertoire across the phylum Annelida, from Polychaeta and Clitellata, major classes of annelids comprising most annelid diversity. We further characterised the functions of the encoded enzymes in selected representative species by using a heterologous expression system based in yeast, demonstrating that functions of Annelida front-end desaturases have highly diversified during their expansion in both terrestrial and aquatic ecosystems. We concluded that annelids possess at least two front-end desaturases with Δ5 and Δ6Δ8 desaturase regioselectivities, enabling all the desaturation reactions required to convert the C18 precursors into the physiologically relevant LC-PUFA such as eicosapentaenoic and arachidonic acids, but not docosahexaenoic acid. Such a gene complement is conserved across the different taxonomic groups within Annelida.


Asunto(s)
Anélidos , Ácidos Grasos Omega-3 , Animales , Ecosistema , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos Insaturados/metabolismo , Anélidos/metabolismo
3.
BMC Genomics ; 23(1): 93, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35105312

RESUMEN

BACKGROUND: The formation and functioning of muscles are fundamental aspects of animal biology, and the evolution of 'muscle genes' is central to our understanding of this tissue. Feeding-fasting-refeeding experiments have been widely used to assess muscle cellular and metabolic responses to nutrition. Though these studies have focused on vertebrate models and only a few invertebrate systems, they have found similar processes are involved in muscle degradation and maintenance. Motivation for these studies stems from interest in diseases whose pathologies involve muscle atrophy, a symptom also triggered by fasting, as well as commercial interest in the muscle mass of animals kept for consumption. Experimentally modelling atrophy by manipulating nutritional state causes muscle mass to be depleted during starvation and replenished with refeeding so that the genetic mechanisms controlling muscle growth and degradation can be understood. RESULTS: Using amphioxus, the earliest branching chordate lineage, we address the gap in previous work stemming from comparisons between distantly related vertebrate and invertebrate models. Our amphioxus feeding-fasting-refeeding muscle transcriptomes reveal a highly conserved myogenic program and that the pro-orthologues of many vertebrate myoblast fusion genes were present in the ancestral chordate, despite these invertebrate chordates having unfused mononucleate myocytes. We found that genes differentially expressed between fed and fasted amphioxus were orthologous to the genes that respond to nutritional state in vertebrates. This response is driven in a large part by the highly conserved IGF/Akt/FOXO pathway, where depleted nutrient levels result in activation of FOXO, a transcription factor with many autophagy-related gene targets. CONCLUSION: Reconstruction of these gene networks and pathways in amphioxus muscle provides a key point of comparison between the distantly related groups assessed thus far, significantly refining the reconstruction of the ancestral state for chordate myoblast fusion genes and identifying the extensive role of duplicated genes in the IGF/Akt/FOXO pathway across animals. Our study elucidates the evolutionary trajectory of muscle genes as they relate to the increased complexity of vertebrate muscles and muscle development.


Asunto(s)
Anfioxos , Animales , Regulación del Desarrollo de la Expresión Génica , Insulina , Anfioxos/genética , Músculos , Mioblastos , Transcriptoma , Vertebrados/genética
4.
Gigascience ; 112022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35166339

RESUMEN

BACKGROUND: Schistosomiasis, or bilharzia, is a parasitic disease caused by trematode flatworms of the genus Schistosoma. Infection by Schistosoma mansoni in humans results when cercariae emerge into water from freshwater snails in the genus Biomphalaria and seek out and penetrate human skin. The snail Biomphalaria straminea is native to South America and is now also present in Central America and China, and represents a potential vector host for spreading schistosomiasis. To date, genomic information for the genus is restricted to the neotropical species Biomphalaria glabrata. This limits understanding of the biology and management of other schistosomiasis vectors, such as B. straminea. FINDINGS: Using a combination of Illumina short-read, 10X Genomics linked-read, and Hi-C sequencing data, our 1.005 Gb B. straminea genome assembly is of high contiguity, with a scaffold N50 of 25.3 Mb. Transcriptomes from adults were also obtained. Developmental homeobox genes, hormonal genes, and stress-response genes were identified, and repeat content was annotated (40.68% of genomic content). Comparisons with other mollusc genomes (including Gastropoda, Bivalvia, and Cephalopoda) revealed syntenic conservation, patterns of homeobox gene linkage indicative of evolutionary changes to gene clusters, expansion of heat shock protein genes, and the presence of sesquiterpenoid and cholesterol metabolic pathway genes in Gastropoda. In addition, hormone treatment together with RT-qPCR assay reveal a sesquiterpenoid hormone responsive system in B. straminea, illustrating that this renowned insect hormonal system is also present in the lophotrochozoan lineage. CONCLUSION: This study provides the first genome assembly for the snail B. straminea and offers an unprecedented opportunity to address a variety of phenomena related to snail vectors of schistosomiasis, as well as evolutionary and genomics questions related to molluscs more widely.


Asunto(s)
Biomphalaria , Esquistosomiasis mansoni , Esquistosomiasis , Animales , Biomphalaria/genética , Biomphalaria/parasitología , Vectores de Enfermedades , Humanos , Schistosoma mansoni/genética , Esquistosomiasis mansoni/parasitología
5.
Dev Growth Differ ; 64(3): 120-137, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35048372

RESUMEN

Wnt signaling is essential during animal development and regeneration, but also plays an important role in diseases such as cancer and diabetes. The canonical Wnt signaling pathway is one of the most conserved signaling cascades in the animal kingdom, with the T-cell factor/lymphoid enhancer factor (TCF/LEF) proteins being the major mediators of Wnt/ß-catenin-regulated gene expression. In comparison with invertebrates, vertebrates possess a high diversity of TCF/LEF family genes, implicating this as a possible key change to Wnt signaling at the evolutionary origin of vertebrates. However, the precise nature of this diversification is only poorly understood. The aim of this study is to clarify orthology, paralogy, and isoform relationships within the TCF/LEF gene family within chordates via in silico comparative study of TCF/LEF gene structure, molecular phylogeny, and gene synteny. Our results support the notion that the four TCF/LEF paralog subfamilies in jawed vertebrates (gnathostomes) evolved via the two rounds of whole-genome duplications that occurred during early vertebrate evolution. Importantly, gene structure comparisons and synteny analysis of jawless vertebrate (cyclostome) TCFs suggest that a TCF7L2-like form of gene structure is a close proxy for the ancestral vertebrate structure. In conclusion, we propose a detailed evolutionary path based on a new pre-whole-genome duplication vertebrate TCF gene model. This ancestor gene model highlights the chordate and vertebrate innovations of TCF/LEF gene structure, providing the foundation for understanding the role of Wnt/ß-catenin signaling in vertebrate evolution.


Asunto(s)
Cordados , Vía de Señalización Wnt , Animales , Cordados/metabolismo , Factor de Unión 1 al Potenciador Linfoide/genética , Vertebrados/genética , Vertebrados/metabolismo , Vía de Señalización Wnt/genética , beta Catenina/genética
6.
Front Immunol ; 12: 794593, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34956228

RESUMEN

The gill of teleost fish is a multifunctional organ involved in many physiological processes, including protection of the mucosal gill surface against pathogens and other environmental antigens by the gill-associated lymphoid tissue (GIALT). Climate change associated phenomena, such as increasing frequency and magnitude of harmful algal blooms (HABs) put extra strain on gill function, contributing to enhanced fish mortality and fish kills. However, the molecular basis of the HAB-induced gill injury remains largely unknown due to the lack of high-throughput transcriptomic studies performed on teleost fish in laboratory conditions. We used juvenile rainbow trout (Oncorhynchus mykiss) to investigate the transcriptomic responses of the gill tissue to two (high and low) sublethal densities of the toxin-producing alga Prymnesium parvum, in relation to non-exposed control fish. The exposure time to P. parvum (4-5 h) was sufficient to identify three different phenotypic responses among the exposed fish, enabling us to focus on the common gill transcriptomic responses to P. parvum that were independent of dose and phenotype. The inspection of common differentially expressed genes (DEGs), canonical pathways, upstream regulators and downstream effects pointed towards P. parvum-induced inflammatory response and gill inflammation driven by alterations of Acute Phase Response Signalling, IL-6 Signalling, IL-10 Signalling, Role of PKR in Interferon Induction and Antiviral Response, IL-8 Signalling and IL-17 Signalling pathways. While we could not determine if the inferred gill inflammation was progressing or resolving, our study clearly suggests that P. parvum blooms may contribute to the serious gill disorders in fish. By providing insights into the gill transcriptomic responses to toxin-producing P. parvum in teleost fish, our research opens new avenues for investigating how to monitor and mitigate toxicity of HABs before they become lethal.


Asunto(s)
Branquias/inmunología , Haptophyta/metabolismo , Inflamación/inmunología , Oncorhynchus mykiss/inmunología , Reacción de Fase Aguda/genética , Animales , Citocinas/genética , Exposición a Riesgos Ambientales/efectos adversos , Proteínas de Peces/genética , Floraciones de Algas Nocivas , Ensayos Analíticos de Alto Rendimiento , Hipoxia/genética , Transducción de Señal , Toxinas Biológicas/efectos adversos , Transcriptoma
7.
BMC Microbiol ; 21(1): 313, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34758745

RESUMEN

BACKGROUND: Understanding the influence of methodology on results is an essential consideration in experimental design. In the expanding field of fish microbiology, many best practices and targeted techniques remain to be refined. This study aimed to compare microbial assemblages obtained from Atlantic salmon (Salmo salar) gills by swabbing versus biopsy excision. Results demonstrate the variation introduced by altered sampling strategies and enhance the available knowledge of the fish gill microbiome. RESULTS: The microbiome was sampled using swabs and biopsies from fish gills, with identical treatment of samples for 16S next generation Illumina sequencing. Results show a clear divergence in microbial communities obtained through the different sampling strategies, with swabbing consistently isolating a more diverse microbial consortia, and suffering less from the technical issue of host DNA contamination associated with biopsy use. Sequencing results from biopsy-derived extractions, however, hint at the potential for more cryptic localisation of some community members. CONCLUSIONS: Overall, results demonstrate a divergence in the obtained microbial community when different sampling methodology is used. Swabbing appears a superior method for sampling the microbiota of mucosal surfaces for broad ecological research in fish, whilst biopsies might be best applied in exploration of communities beyond the reach of swabs, such as sub-surface and intracellular microbes, as well as in pathogen diagnosis. Most studies on the external microbial communities of aquatic organisms utilise swabbing for sample collection, likely due to convenience. Much of the ultrastructure of gill tissue in live fish is, however, potentially inaccessible to swabbing, meaning swabbing might fail to capture the full diversity of gill microbiota. This work therefore also provides valuable insight into partitioning of the gill microbiota, informing varied applications of different sampling methods in experimental design for future research.


Asunto(s)
Bacterias/aislamiento & purificación , Branquias/microbiología , Microbiota , Salmo salar/microbiología , Animales , Acuicultura , Bacterias/clasificación , Bacterias/genética , Filogenia , Piel/microbiología , Manejo de Especímenes
8.
Evodevo ; 12(1): 10, 2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34579780

RESUMEN

The Nereid Platynereis dumerilii (Audouin and Milne Edwards (Annales des Sciences Naturelles 1:195-269, 1833) is a marine annelid that belongs to the Nereididae, a family of errant polychaete worms. The Nereid shows a pelago-benthic life cycle: as a general characteristic for the superphylum of Lophotrochozoa/Spiralia, it has spirally cleaving embryos developing into swimming trochophore larvae. The larvae then metamorphose into benthic worms living in self-spun tubes on macroalgae. Platynereis is used as a model for genetics, regeneration, reproduction biology, development, evolution, chronobiology, neurobiology, ecology, ecotoxicology, and most recently also for connectomics and single-cell genomics. Research on the Nereid started with studies on eye development and spiralian embryogenesis in the nineteenth and early twentieth centuries. Transitioning into the molecular era, Platynereis research focused on posterior growth and regeneration, neuroendocrinology, circadian and lunar cycles, fertilization, and oocyte maturation. Other work covered segmentation, photoreceptors and other sensory cells, nephridia, and population dynamics. Most recently, the unique advantages of the Nereid young worm for whole-body volume electron microscopy and single-cell sequencing became apparent, enabling the tracing of all neurons in its rope-ladder-like central nervous system, and the construction of multimodal cellular atlases. Here, we provide an overview of current topics and methodologies for P. dumerilii, with the aim of stimulating further interest into our unique model and expanding the active and vibrant Platynereis community.

9.
BMC Genomics ; 21(1): 713, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33059600

RESUMEN

BACKGROUND: Homeobox-containing genes encode crucial transcription factors involved in animal, plant and fungal development, and changes to homeobox genes have been linked to the evolution of novel body plans and morphologies. In animals, some homeobox genes are clustered together in the genome, either as remnants from ancestral genomic arrangements, or due to coordinated gene regulation. Consequently, analyses of homeobox gene organization across animal phylogeny provide important insights into the evolution of genome organization and developmental gene control, and their interaction. However, homeobox gene organization remains to be fully elucidated in several key animal ancestors, including those of molluscs, lophotrochozoans and bilaterians. RESULTS: Here, we present a high-quality chromosome-level genome assembly of the Hong Kong oyster, Magallana hongkongensis (2n = 20), for which 93.2% of the genomic sequences are contained on 10 pseudomolecules (~ 758 Mb, scaffold N50 = 72.3 Mb). Our genome assembly was scaffolded using Hi-C reads, facilitating a larger scaffold size compared to the recently published M. hongkongensis genome of Peng et al. (Mol Ecol Resources, 2020), which was scaffolded using the Crassostrea gigas assembly. A total of 46,963 predicted gene models (45,308 protein coding genes) were incorporated in our genome, and genome completeness estimated by BUSCO was 94.6%. Homeobox gene linkages were analysed in detail relative to available data for other mollusc lineages. CONCLUSIONS: The analyses performed in this study and the accompanying genome sequence provide important genetic resources for this economically and culturally valuable oyster species, and offer a platform to improve understanding of animal biology and evolution more generally. Transposable element content is comparable to that found in other mollusc species, contrary to the conclusion of another recent analysis. Also, our chromosome-level assembly allows the inference of ancient gene linkages (synteny) for the homeobox-containing genes, even though a number of the homeobox gene clusters, like the Hox/ParaHox clusters, are undergoing dispersal in molluscs such as this oyster.


Asunto(s)
Genes Homeobox , Ostreidae , Animales , Genes Homeobox/genética , Genoma , Ostreidae/genética , Filogenia , Sintenía
10.
Mol Biol Evol ; 37(10): 2966-2982, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32520990

RESUMEN

The evolutionary transition from invertebrates to vertebrates involved extensive gene duplication, but understanding precisely how such duplications contributed to this transition requires more detailed knowledge of specific cases of genes and gene families. Myogenic differentiation (MyoD) has long been recognized as a master developmental control gene and member of the MyoD family of bHLH transcription factors (myogenic regulatory factors [MRFs]) that drive myogenesis across the bilaterians. Phylogenetic reconstructions within this gene family are complicated by multiple instances of gene duplication and loss in several lineages. Following two rounds of whole-genome duplication (2R WGD) at the origin of the vertebrates, the ancestral function of MRFs is thought to have become partitioned among the daughter genes, so that MyoD and Myf5 act early in myogenic determination, whereas Myog and Myf6 are expressed later, in differentiating myoblasts. Comparing chordate MRFs, we find an independent expansion of MRFs in the invertebrate chordate amphioxus, with evidence for a parallel instance of subfunctionalization relative to that of vertebrates. Conserved synteny between chordate MRF loci supports the 2R WGD events as a major force in shaping the evolution of vertebrate MRFs. We also resolve vertebrate MRF complements and organization, finding a new type of vertebrate MRF gene in the process, which allowed us to infer an ancestral two-gene state in the vertebrates corresponding to the early- and late-acting types of MRFs. This necessitates a revision of previous conclusions about the simple one-to-four origin of vertebrate MRFs.


Asunto(s)
Evolución Molecular , Anfioxos/genética , Factores Reguladores Miogénicos/genética , Animales , Duplicación de Gen , Anfioxos/crecimiento & desarrollo , Familia de Multigenes , Desarrollo de Músculos , Sintenía
11.
Mol Biol Evol ; 37(10): 2955-2965, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32521021

RESUMEN

A striking feature of micro-RNAs is that they are often clustered in the genomes of animals. The functional and evolutionary consequences of this clustering remain obscure. Here, we investigated a micro-RNA cluster miR-6/5/4/286/3/309 that is conserved across drosophilid lineages. Small RNA sequencing revealed expression of this micro-RNA cluster in Drosophila melanogaster leg discs, and conditional overexpression of the whole cluster resulted in leg appendage shortening. Transgenic overexpression lines expressing different combinations of micro-RNA cluster members were also constructed. Expression of individual micro-RNAs from the cluster resulted in a normal wild-type phenotype, but either the expression of several ancient micro-RNAs together (miR-5/4/286/3/309) or more recently evolved clustered micro-RNAs (miR-6-1/2/3) can recapitulate the phenotypes generated by the whole-cluster overexpression. Screening of transgenic fly lines revealed downregulation of leg-patterning gene cassettes in generation of the leg-shortening phenotype. Furthermore, cell transfection with different combinations of micro-RNA cluster members revealed a suite of downstream genes targeted by all cluster members, as well as complements of targets that are unique for distinct micro-RNAs. Considered together, the micro-RNA targets and the evolutionary ages of each micro-RNA in the cluster demonstrate the importance of micro-RNA clustering, where new members can reinforce and modify the selection forces on both the cluster regulation and the gene regulatory network of existing micro-RNAs. Key words: micro-RNA, cluster, evolution.


Asunto(s)
Drosophila melanogaster/genética , Evolución Molecular , MicroARNs/genética , Animales , Secuencia de Bases , Secuencia Conservada , Drosophila melanogaster/metabolismo , Femenino , Masculino , MicroARNs/metabolismo , Familia de Multigenes , Selección Genética
12.
BMC Evol Biol ; 18(1): 203, 2018 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-30587111

RESUMEN

BACKGROUND: Hox genes are key elements in patterning animal development. They are renowned for their, often, clustered organisation in the genome, with supposed mechanistic links between the organisation of the genes and their expression. The widespread distribution and comparable functions of Hox genes across the animals has led to them being a major study system for comparing the molecular bases for construction and divergence of animal morphologies. Echinoderms (including sea urchins, sea stars, sea cucumbers, feather stars and brittle stars) possess one of the most unusual body plans in the animal kingdom with pronounced pentameral symmetry in the adults. Consequently, much interest has focused on their development, evolution and the role of the Hox genes in these processes. In this context, the organisation of echinoderm Hox gene clusters is distinctive. Within the classificatory system of Duboule, echinoderms constitute one of the clearest examples of Disorganized (D) clusters (i.e. intact clusters but with a gene order or orientation rearranged relative to the ancestral state). RESULTS: Here we describe two Hox genes (Hox11/13d and e) that have been overlooked in most previous work and have not been considered in reconstructions of echinoderm Hox complements and cluster organisation. The two genes are related to Posterior Hox genes and are present in all classes of echinoderm. Importantly, they do not reside in the Hox cluster of any species for which genomic linkage data is available. CONCLUSION: Incorporating the two neglected Posterior Hox genes into assessments of echinoderm Hox gene complements and organisation shows that these animals in fact have Split (S) Hox clusters rather than simply Disorganized (D) clusters within the Duboule classification scheme. This then has implications for how these genes are likely regulated, with them no longer covered by any potential long-range Hox cluster-wide, or multigenic sub-cluster, regulatory mechanisms.


Asunto(s)
Equinodermos/genética , Evolución Molecular , Genes Homeobox , Proteínas de Homeodominio/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Equinodermos/clasificación , Equinodermos/crecimiento & desarrollo , Proteínas de Homeodominio/química , Familia de Multigenes , Filogenia , Alineación de Secuencia
13.
BMC Biol ; 16(1): 124, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30382837

RESUMEN

David Ferrier is a Reader at the University of St Andrews and Deputy Director of the Scottish Oceans Institute, where his lab studies how the diversity of form in the animal kingdom evolved, with an emphasis on using comparative genomics. In this interview, David shares his thoughts on how to escape the 'straitjacket' of traditional model systems, transparency in peer review, and the past and future of genome sequencing.


Asunto(s)
Organismos Acuáticos/genética , Biodiversidad , Evolución Biológica , Genómica/métodos , Secuenciación Completa del Genoma/historia , Historia del Siglo XXI , Revisión de la Investigación por Pares , Escocia
14.
Nature ; 564(7734): 64-70, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30464347

RESUMEN

Vertebrates have greatly elaborated the basic chordate body plan and evolved highly distinctive genomes that have been sculpted by two whole-genome duplications. Here we sequence the genome of the Mediterranean amphioxus (Branchiostoma lanceolatum) and characterize DNA methylation, chromatin accessibility, histone modifications and transcriptomes across multiple developmental stages and adult tissues to investigate the evolution of the regulation of the chordate genome. Comparisons with vertebrates identify an intermediate stage in the evolution of differentially methylated enhancers, and a high conservation of gene expression and its cis-regulatory logic between amphioxus and vertebrates that occurs maximally at an earlier mid-embryonic phylotypic period. We analyse regulatory evolution after whole-genome duplications, and find that-in vertebrates-over 80% of broadly expressed gene families with multiple paralogues derived from whole-genome duplications have members that restricted their ancestral expression, and underwent specialization rather than subfunctionalization. Counter-intuitively, paralogues that restricted their expression increased the complexity of their regulatory landscapes. These data pave the way for a better understanding of the regulatory principles that underlie key vertebrate innovations.


Asunto(s)
Regulación de la Expresión Génica , Genómica , Anfioxos/genética , Vertebrados/genética , Animales , Tipificación del Cuerpo/genética , Metilación de ADN , Humanos , Anfioxos/embriología , Anotación de Secuencia Molecular , Regiones Promotoras Genéticas , Transcriptoma/genética
15.
Curr Biol ; 28(20): R1208-R1210, 2018 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-30352193

RESUMEN

DNA is under constant assault and needs to efficiently repair breaks. A tiny marine relative of vertebrates makes do with an alternative mechanism to the canonical repair system, which coincides with it possessing one of the most extreme animal genomes.


Asunto(s)
Cordados , Reparación del ADN por Unión de Extremidades , Animales , Roturas del ADN de Doble Cadena , Reparación del ADN , Mutación , Prevalencia
16.
Genome Biol Evol ; 10(9): 2151-2167, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29986009

RESUMEN

The diversity of mechanisms and capacity for regeneration across the Metazoa present an intriguing challenge in evolutionary biology, impacting on the burgeoning field of regenerative medicine. Broad taxonomic sampling is essential to improve our understanding of regeneration, and studies outside of the traditional model organisms have proved extremely informative. Within the historically understudied Spiralia, the Annelida have an impressive variety of tractable regenerative systems. The biomeralizing, blastema-less regeneration of the head appendage (operculum) of the serpulid polychaete keelworm Spirobranchus (formerly Pomatoceros) lamarcki is one such system. To profile potential regulatory mechanisms, we classified the homeobox gene content of opercular regeneration transcriptomes. As a result of retrieving several difficult-to-classify homeobox sequences, we performed an extensive search and phylogenetic analysis of the TALE and PRD-class homeobox gene content of a broad selection of lophotrochozoan genomes. These analyses contribute to our increasing understanding of the diversity, taxonomic extent, rapid evolution, and radical flexibility of these recently discovered homeobox gene radiations. Our expansion and integration of previous nomenclature systems helps to clarify their cryptic orthology. We also describe an unusual divergent S. lamarcki Antp gene, a previously unclassified lophotrochozoan orphan gene family (Lopx), and a number of novel Nk class orphan genes. The expression and potential involvement of many of these lineage- and clade-restricted homeobox genes in S. lamarcki operculum regeneration provides an example of diversity in regenerative mechanisms, as well as significantly improving our understanding of homeobox gene evolution.


Asunto(s)
Genes Homeobox , Poliquetos/genética , Transcriptoma , Secuencia de Aminoácidos , Animales , Anélidos/genética , Evolución Molecular , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Filogenia , Alineación de Secuencia
17.
Sci Rep ; 8(1): 9414, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29925900

RESUMEN

The Pax3/7 transcription factor family is integral to developmental gene networks contributing to important innovations in vertebrate evolution, including the neural crest. The basal chordate lineage of amphioxus is ideally placed to understand the dynamics of the gene regulatory network evolution that produced these novelties. We report here the discovery that the cephalochordate lineage possesses two Pax3/7 genes, Pax3/7a and Pax3/7b. The tandem duplication is ancestral to all extant amphioxus, occurring in both Asymmetron and Branchiostoma, but originated after the split from the lineage leading to vertebrates. The two paralogues are differentially expressed during embryonic development, particularly in neural and somitic tissues, suggesting distinct regulation. Our results have implications for the study of amphioxus regeneration, neural plate and crest evolution, and differential tandem paralogue evolution.


Asunto(s)
Cefalocordados/embriología , Cefalocordados/metabolismo , Factor de Transcripción PAX3/metabolismo , Factor de Transcripción PAX7/metabolismo , Animales , Teorema de Bayes , Evolución Molecular , Exones/genética , Duplicación de Gen/genética , Regulación del Desarrollo de la Expresión Génica/genética , Cresta Neural/embriología , Cresta Neural/metabolismo , Placa Neural/embriología , Placa Neural/metabolismo , Factor de Transcripción PAX3/genética , Factor de Transcripción PAX7/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vertebrados/embriología , Vertebrados/metabolismo
18.
Sci Adv ; 4(5): eaar6849, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29732410

RESUMEN

Marine ecosystems are responsible for virtually all production of omega-3 (ω3) long-chain polyunsaturated fatty acids (PUFA), which are essential nutrients for vertebrates. Current consensus is that marine microbes account for this production, given their possession of key enzymes including methyl-end (or "ωx") desaturases. ωx desaturases have also been described in a small number of invertebrate animals, but their precise distribution has not been systematically explored. This study identifies 121 ωx desaturase sequences from 80 species within the Cnidaria, Rotifera, Mollusca, Annelida, and Arthropoda. Horizontal gene transfer has contributed to this hitherto unknown widespread distribution. Functional characterization of animal ωx desaturases provides evidence that multiple invertebrates have the ability to produce ω3 PUFA de novo and further biosynthesize ω3 long-chain PUFA. This finding represents a fundamental revision in our understanding of ω3 long-chain PUFA production in global food webs, by revealing that numerous widespread and abundant invertebrates have the endogenous capacity to make significant contributions beyond that coming from marine microbes.


Asunto(s)
Vías Biosintéticas/genética , Ácidos Grasos Omega-3/biosíntesis , Regulación Enzimológica de la Expresión Génica , Animales , Activación Enzimática , Ácido Graso Desaturasas/genética , Genoma , Genómica/métodos , Mutación , Filogenia
19.
Sci Adv ; 4(4): eaar4817, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29740614

RESUMEN

Scattering and absorption limit the penetration of optical fields into tissue. We demonstrate a new approach for increased depth penetration in light-sheet microscopy: attenuation-compensation of the light field. This tailors an exponential intensity increase along the illuminating propagation-invariant field, enabling the redistribution of intensity strategically within a sample to maximize signal and minimize irradiation. A key attribute of this method is that only minimal knowledge of the specimen transmission properties is required. We numerically quantify the imaging capabilities of attenuation-compensated Airy and Bessel light sheets, showing that increased depth penetration is gained without compromising any other beam attributes. This powerful yet straightforward concept, combined with the self-healing properties of the propagation-invariant field, improves the contrast-to-noise ratio of light-sheet microscopy up to eightfold across the entire field of view in thick biological specimens. This improvement can significantly increase the imaging capabilities of light-sheet microscopy techniques using Airy, Bessel, and other propagation-invariant beam types, paving the way for widespread uptake by the biomedical community.

20.
Dev Genes Evol ; 228(1): 13-30, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29297095

RESUMEN

Retrogenes are formed when an mRNA is reverse-transcribed and reinserted into the genome in a location unrelated to the original locus. If this retrocopy inserts into a transcriptionally favourable locus and is able to carry out its original function, it can, in rare cases, lead to retrogene replacement. This involves the original, often multi-exonic, parental copy being lost whilst the newer single-exon retrogene copy 'replaces' the role of the ancestral parent gene. One example of this is amphioxus SYCP1, a gene that encodes a protein used in synaptonemal complex formation during meiosis and which offers the opportunity to examine how a retrogene evolves after the retrogene replacement event. SYCP1 genes exist as large multi-exonic genes in most animals. AmphiSYCP1, however, contains a single coding exon of ~ 3200 bp and has inserted next to the ParaHox cluster of amphioxus, whilst the multi-exonic ancestral parental copy has been lost. Here, we show that AmphiSYCP1 has not only replaced its parental copy, but also has evolved additional regulatory function by co-opting a bidirectional promoter from the nearby AmphiCHIC gene. AmphiSYCP1 has also evolved a de novo, multi-exonic 5'untranslated region that displays distinct regulatory states, in the form of two different isoforms, and has evolved novel expression patterns during amphioxus embryogenesis in addition to its ancestral role in meiosis. The absence of ParaHox-like expression of AmphiSYCP1, despite its proximity to the ParaHox cluster, also suggests that this gene is not influenced by any potential pan-cluster regulatory mechanisms, which are seemingly restricted to only the ParaHox genes themselves.


Asunto(s)
Evolución Molecular , Anfioxos/genética , Proteínas Nucleares/genética , Regiones no Traducidas 5' , Secuencia de Aminoácidos , Animales , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Gónadas/metabolismo , Proteínas de Homeodominio/genética , Anfioxos/clasificación , Anfioxos/embriología , Filogenia , Regiones Promotoras Genéticas , Alineación de Secuencia , Complejo Sinaptonémico/química , Complejo Sinaptonémico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA