Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 14: 1145140, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033613

RESUMEN

Synthetic cathinones constitute the second largest groups of new psychoactive substances (NPS), which are especially popular among adolescents and young adults. Due to their potential toxicity, the recreational use of these NPS constitute a serious worldwide public health problem. However, their fast appearance in the market renders the continuous updating of NPS information highly challenging for forensic authorities. The unavailability of pharmacokinetic data for emerging NPS is critical for forensic and clinical verifications. With the ultimate goal of having a proactive approach towards the NPS issue, high resolution mass spectrometry was used in the current work to assess preliminary pharmacokinetic data for 8 selected cathinones: 4 reported substances (4-CIC, 3-CMC, 4-CMC and 4-MEAP) and 4 previously unreported ones (3-CIC, 4-MDMB, 4-MNEB and 4-MDMP) for which the emergence on the NSP market is expected to be eminent, were also included in this study. Based on the calculation of pharmacokinetic parameters, half-life and intrinsic clearance, 4-CMC and 4-MDMB are low and high clearance compounds, respectively, and all the remaining cathinones included in this study are intermediate clearance compounds. This fact anticipates the key role of metabolites as suitable biomarkers to extend detection windows beyond those provided by the parent cathinones. Reduction of the keto group and hydroxylation on the alkyl chains were the common metabolic pathways identified for all cathinones. However, the relative importance of these metabolic transformations is dependent on the cathinone substituents. The glucuronic acid conjugation to metabolites stemming for keto group reduction constituted the sole Phase II transformation identified. To our knowledge, this study constitutes the first metabolite profiling of the already reported synthetic cathinones 4-CIC, 3-CMC and 4-CMC. Noteworthy is the fact that 3-CMC accounts for almost a quarter of the quantity of powders seized during 2020. The analytical methods developed, and the metabolites characterized, are now available to be included in routine screening methods to attest the consumption of the 8 cathinones studied.

2.
Anal Bioanal Chem ; 415(4): 571-589, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36494605

RESUMEN

Over the past 15 years, synthetic cathinones have emerged as an important class of new psychoactive substances (NPS) worldwide. The proliferation of these psychostimulants and their sought-after effects among recreational drug users pose a serious threat to public health and enormous challenges to forensic laboratories. For forensic institutions, it is essential to be one step ahead of covert laboratories, foreseeing the structural changes possible to introduce in the core skeleton of cathinones while maintaining their stimulating activity. In this manner, it is feasible to equip themselves with standards of possible new cathinones and validated analytical methods for their qualitative and quantitative detection. Therefore, the aim of the work herein described was to synthesize emerging cathinones based on the evolving patterns in the illicit drug market, and to develop an analytical method for their accurate determination in forensic situations. Five so far unreported cathinones [4'-methyl-N-dimethylbuphedrone (4-MDMB), 4'-methyl-N-ethylbuphedrone (4-MNEB), 4'-methyl-N-dimethylpentedrone (4-MDMP), 4'-methyl-N-dimethylhexedrone (4-MDMH), and 4'-methyl-N-diethylbuphedrone (4-MDEB)] and a sixth one, 4'-methyl-N-ethylpentedrone, already reported to EMCDDA and also known as 4-MEAP, were synthesized and fully characterized by nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). An analytical method for the simultaneous quantification of these cathinones in blood, using solid phase extraction (SPE) combined with gas chromatography-mass spectrometry (GC-MS) was developed and validated. The results prove that this methodology is selective, linear, precise, and accurate. For all target cathinones, the extraction efficiency was higher than 73%, linearity was observed in the range of 10 (lower limit of quantification, LLOQ) to 800 ng/mL, with coefficients of determination higher than 0.99, and the limits of detection (LODs) were 5 ng/mL for all target cathinones. The stability of these cathinones in blood matrices is dependent on the storage conditions; 4-MNEB is the most stable compound and 4-MDMH is the least stable compound. The low limits obtained allow the detection of the compounds in situations where they are involved, even if present at low concentrations.


Asunto(s)
Alcaloides , Cromatografía de Gases y Espectrometría de Masas/métodos , Espectrometría de Masas , Alcaloides/análisis , Extracción en Fase Sólida
3.
Toxicol Sci ; 170(2): 452-461, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31086981

RESUMEN

Exposure to endocrine disrupting chemicals is an established risk factor for obesity. The most commonly used pesticide active ingredients have never been tested in an adipogenesis assay. We tested for the first time the potential of glyphosate, 2, 4-dichlorophenoxyacetic acid, dicamba, mesotrione, isoxaflutole, and quizalofop-p-ethyl (QpE) to induce lipid accumulation in murine 3T3-L1 adipocytes. Only QpE caused a dose-dependent statistically significant triglyceride accumulation from a concentration of 5 up to 100 µM. The QpE commercial formulation Targa Super was 100 times more cytotoxic than QpE alone. Neither the estrogen receptor antagonist ICI 182, 780 nor the glucocorticoid receptor antagonist RU486 was able to block the QpE-induced lipid accumulation. RNAseq analysis of 3T3-L1 adipocytes exposed to QpE suggests that this compound exerts its lipid accumulation effects via a peroxisome proliferator-activated receptor gamma (PPARγ)-mediated pathway, a nuclear receptor whose modulation influences lipid metabolism. QpE was further shown to be active in a PPARγ reporter gene assay at 100 µM, reaching 4% of the maximal response produced by rosiglitazone, which acts as a positive control. This indicates that lipid accumulation induced by QpE is only in part caused by PPARγ activation. The lipid accumulation capability of QpE we observe suggest that this pesticide, whose use is likely to increase in coming years may have a hitherto unsuspected obesogenic property.


Asunto(s)
Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Propionatos/toxicidad , Quinoxalinas/toxicidad , Células 3T3-L1 , Adipocitos/metabolismo , Animales , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , PPAR gamma/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...