Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 661: 861-869, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38330658

RESUMEN

Hypothesis Conventional solvent exchange formulation methods face limitations when trying to control the final non-equilibrium size properties of block copolymer micelles containing a strongly hydrophobicity and a rigid block because the solvent conditions are not well controlled during micelle formation. Therefore, using an alternative formulation method, named Equilibration-Nanoprecipitation (ENP), in which micelles are formed under uniform solvent conditions, will significantly reduce the final dispersity compared a conventional solvent exchange method. EXPERIMENTAL: Size properties of the final aqueous micelle dispersions formed from the ENP method and a conventional solvent exchange are measured using DLS. Also, a parallel modelling study is completed to predict the final size distributions using both methods. Findings The experimental results demonstrate the ENP method is effective producing non-equilibrium micelles with low dispersity below the monodisperse polydispersity index (PDI) cutoff for DLS while the conventional solvent exchange method leads to significantly greater dispersity. Also the experimental results highlight ENP can be used to tune the final size properties which cannot be done using methods which do not properly control the micelle formation conditions. Additionally, the modelling study supports the utility of the ENP approach for producing monodisperse dispersions of nonequilibrium polymer micelles.

2.
Soft Matter ; 19(47): 9269-9281, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38009013

RESUMEN

In the pursuit of the development of a first-in-kind polymer lung surfactant (PLS) therapeutic whose effects are biophysical in nature, a comprehensive understanding of the factors affecting the air-water surface mechanical behavior of water-spread block copolymer micelles is desired. To this end, we explore the effect of temperature on the surface mechanical behavior of two different micelle core chemistries, poly(styrene) (PS) and poly(tert-butyl methacrylate) (PtBMA), each having poly(ethylene glycol) (PEG) as the hydrophilic block. The behavior is characterized using surface pressure-area isotherms and quantitative Brewster angle microscopy. The results indicate that the temperature has a significant effect on the micelle structure at the interface and this effect is related to the core Tg as well as the core interfacial tension properties. When temperature is higher than the core Tg for PS-PEG, the spherical micelle core rearranges to form an oblate-like structure which increases its interfacial area. The structural rearrangement changes the mechanism by which the film produces high surface pressure. For PtBMA-PEG, which has a lower interfacial tension with water and air compared to PS, the core domains spread at the interface when the mobility is sufficiently high such that a PtBMA film is formed under high compression. The implications of these changes on PLS efficacy are discussed highlighting the importance of core Tg characterization for polymer nanoparticle applications.

3.
Int J Pharm ; 646: 123476, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37805148

RESUMEN

Polymer lung surfactant (PLS) is a polyethylene glycol (PEG)-brushed block copolymer micelle designed for pulmonary surfactant replacement therapy. Saccharides (e.g., sucrose and (2-hydroxypropyl)-ß-cyclodextrin) and water-soluble polymers (e.g., PEG), common excipients for lyophilization, were found to severely impair the surface activity of lyophilized PLS. To investigate the feasibility of excipient-free lyophilization of PLS, we studied the effects of both PLS material parameters and lyophilization operating parameters on the redispersibility and surface availability of reconstituted PLS, all without relying on excipients. We found that the redispersibility was improved by three factors; a faster cooling rate during the freezing stage reduced freezing stress; a higher PEG grafting density enhanced dissipating effects; and the absence of hydrophobic endgroups in the PEG block further prevented micelle aggregation. Consequently, the surface availability of PLS increased, enabling the micelle monolayer at the air/water interface to achieve a surface tension below 10 mN/m, which is a key pharmaceutical function of PLS. Moreover, the lyophilized micelles in powder form could be easily dispersed on water surfaces without the need for reconstitution, which opens up the possibility of inhalation delivery, a more patient-friendly administration method compared to instillation. The successful excipient-free lyophilization unlocks the potential of PLS for addressing acute respiratory distress syndrome (ARDS) and other pulmonary dysfunctions.


Asunto(s)
Micelas , Surfactantes Pulmonares , Humanos , Excipientes/química , Polímeros/química , Polietilenglicoles/química , Tensoactivos/química , Liofilización/métodos , Agua , Pulmón
4.
Langmuir ; 39(38): 13546-13559, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37706471

RESUMEN

Amphiphilic block copolymer micelles can mimic the ability of natural lung surfactant to reduce the air-water interfacial tension close to zero and prevent the Laplace pressure-induced alveolar collapse. In this work, we investigated the air-water interfacial behaviors of polymer micelles derived from eight different poly(ethylene glycol) (PEG)-based block copolymers having different hydrophobic block chemistries to elucidate the effect of the core block chemistry on the surface mechanics of the block copolymer micelles. Aqueous micelles of about 30 nm in hydrodynamic diameter were prepared from the PEG-based block copolymers via equilibration-nanoprecipitation (ENP) and spread on the water surface using water as the spreading medium. Surface pressure-area isotherm and quantitative Brewster angle microscopy (QBAM) measurements were performed to investigate how the micelle/monolayer structures change during lateral compression of the monolayer; widely varying structural behaviors were observed, including the wrinkling/collapse of micelle monolayers and deformation and/or the desorption of individual micelles. By bivariate correlation regression analysis of surface pressure-area isotherm data, it was found that the rigidity and hydrophobicity of the hydrophobic core domain, which are quantified by glass-transition temperature (Tg) and water contact angle (θ) measurements, respectively, are coupled factors that need to be taken into account concurrently in order to control the surface mechanical properties of polymer micelle monolayers; micelles having rigid and strongly hydrophobic cores exhibited high surface pressure and a high compressibility modulus under high compression. High surface pressure and a high compressibility modulus were also found to be correlated with the formation of wrinkles in the micelle monolayer (visualized by Brewster angle microscopy (BAM)). From this study, we conclude that polymer micelles based on hydrophobic block materials having higher Tg and θ are more suitable for surfactant replacement therapy applications that require the therapeutic surfactant to produce a high surface pressure and modulus at the alveolar air-water interface.

5.
ACS Biomater Sci Eng ; 9(5): 2716-2730, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37079432

RESUMEN

If not properly managed, acute lung injuries, either through direct or indirect causes, have the potential to present serious risk for many patients worldwide. One of the mechanisms for the transition from acute lung injury (ALI) to the more serious acute respiratory distress syndrome (ARDS) is the deactivation of the native lung surfactant by injury-induced infiltrates to the alveolar space. Currently, there are no surfactant replacement therapies that are used to treat ALI and subsequent ARDS. In this paper, we present an indepth efficacy study of using a novel polymer lung surfactant (PLS, composed of poly(styrene-block-ethylene glycol) (PS-PEG) block copolymer micelles), which has unique properties compared to other tested surfactant replacements, in two different mouse models of lung injury. The results demonstrate that pharyngeal administration of PLS after the instillation of either acid (HCl) or lipopolysaccharide (LPS) can decrease the severity of lung injury as measured by multiple injury markers.


Asunto(s)
Lesión Pulmonar Aguda , Surfactantes Pulmonares , Síndrome de Dificultad Respiratoria , Ratones , Animales , Polímeros/farmacología , Polímeros/uso terapéutico , Pulmón , Surfactantes Pulmonares/farmacología , Surfactantes Pulmonares/uso terapéutico , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/etiología , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/complicaciones
6.
Biomacromolecules ; 23(6): 2471-2484, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35580262

RESUMEN

We have recently discovered that pulmonary administration of nanoparticles (micelles) formed by amphiphilic poly(styrene-block-ethylene glycol) (PS-PEG) block copolymers has the potential to treat a lung disorder involving lung surfactant (LS) dysfunction (called acute respiratory distress syndrome (ARDS)), as PS-PEG nanoparticles are capable of reducing the surface tension of alveolar fluid, while they are resistant to deactivation caused by plasma proteins/inflammation products unlike natural LS. Herein, we report studies of the clearance pathways and kinetics of PS-PEG nanoparticles from the lung, which are essential for designing further preclinical IND-enabling studies. Using fluorescently labeled PS-PEG nanoparticles, we found that, following pharyngeal aspiration in mice, the retention of these nanoparticles in the lungs extends over 2 weeks, while their transport into other (secondary) organs is relatively insignificant. An analysis based on a multicompartmental pharmacokinetic model suggests a biphasic mechanism involving a fast mucociliary escalator process through the conducting airways and much slower alveolar clearance processes by the action of macrophages and also via direct translocation into the circulation. An excessive dose of PS-PEG nanoparticles led to prolonged retention in the lungs due to saturation of the alveolar clearance capacity.


Asunto(s)
Polietilenglicoles , Polímeros , Animales , Pulmón , Ratones , Micelas , Polietilenglicoles/farmacocinética , Tensoactivos
7.
J Colloid Interface Sci ; 617: 764-777, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35325653

RESUMEN

HYPOTHESIS: The surface mechanical properties of poly(styrene)-poly(ethylene glycol) (PS-PEG) micelles are influenced by the PEG corona structure. Changes in micelle aggregation number as well as changes in the PEG end group and linking group chemistry of the PS-PEG block copolymer are expected to alter PEG corona characteristics and therefore affect surface mechanical properties of the resulting micelle film. EXPERIMENTS: Different sized micelles comprised of PS-PEG block copolymer chains were formulated by equilibrating micelles in different ratios of acetone/water mixtures and subsequently removing acetone using dialysis. Additionally, micelles of a similar size and PS-PEG molecular weight but slightly different chemistry were formulated. The micelles were characterized using dynamic light scattering (DLS), transmission electron microscopy (TEM), 1H NMR, surface pressure-area isotherms and Brewster angle microscopy (BAM). FINDINGS: The reduction in micelle aggregation number results in the subsequent monolayer having higher compressibility moduli and bending stiffnesses and collapsing at lower surface pressures. Micelle hydrophobicity was shown to improve readsorption of micelles to interface after collapse. Analysis of Brewster angle microscopy images of out-of-plane wrinkle structures which formed upon monolayer collapse indicates the presence of continuous 1 nm thick PEG layer which allows micelle monolayers to bend under high compression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...