Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3745, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702304

RESUMEN

Early childhood tumours arise from transformed embryonic cells, which often carry large copy number alterations (CNA). However, it remains unclear how CNAs contribute to embryonic tumourigenesis due to a lack of suitable models. Here we employ female human embryonic stem cell (hESC) differentiation and single-cell transcriptome and epigenome analysis to assess the effects of chromosome 17q/1q gains, which are prevalent in the embryonal tumour neuroblastoma (NB). We show that CNAs impair the specification of trunk neural crest (NC) cells and their sympathoadrenal derivatives, the putative cells-of-origin of NB. This effect is exacerbated upon overexpression of MYCN, whose amplification co-occurs with CNAs in NB. Moreover, CNAs potentiate the pro-tumourigenic effects of MYCN and mutant NC cells resemble NB cells in tumours. These changes correlate with a stepwise aberration of developmental transcription factor networks. Together, our results sketch a mechanistic framework for the CNA-driven initiation of embryonal tumours.


Asunto(s)
Diferenciación Celular , Variaciones en el Número de Copia de ADN , Proteína Proto-Oncogénica N-Myc , Cresta Neural , Neuroblastoma , Humanos , Neuroblastoma/genética , Neuroblastoma/patología , Cresta Neural/metabolismo , Cresta Neural/patología , Femenino , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Aberraciones Cromosómicas , Células Madre Embrionarias Humanas/metabolismo , Transcriptoma , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
2.
Nat Commun ; 14(1): 3620, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365178

RESUMEN

Metastasis is the major cause of cancer-related deaths. Neuroblastoma (NB), a childhood tumor has been molecularly defined at the primary cancer site, however, the bone marrow (BM) as the metastatic niche of NB is poorly characterized. Here we perform single-cell transcriptomic and epigenomic profiling of BM aspirates from 11 subjects spanning three major NB subtypes and compare these to five age-matched and metastasis-free BM, followed by in-depth single cell analyses of tissue diversity and cell-cell interactions, as well as functional validation. We show that cellular plasticity of NB tumor cells is conserved upon metastasis and tumor cell type composition is NB subtype-dependent. NB cells signal to the BM microenvironment, rewiring via macrophage mgration inhibitory factor and midkine signaling specifically monocytes, which exhibit M1 and M2 features, are marked by activation of pro- and anti-inflammatory programs, and express tumor-promoting factors, reminiscent of tumor-associated macrophages. The interactions and pathways characterized in our study provide the basis for therapeutic approaches that target tumor-to-microenvironment interactions.


Asunto(s)
Neoplasias de la Médula Ósea , Neuroblastoma , Humanos , Niño , Médula Ósea/patología , Monocitos/metabolismo , Transcriptoma , Epigenómica , Neoplasias de la Médula Ósea/genética , Neoplasias de la Médula Ósea/metabolismo , Neoplasias de la Médula Ósea/patología , Neuroblastoma/metabolismo , Microambiente Tumoral/genética
3.
Cancer Cell ; 40(1): 53-69.e9, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34971569

RESUMEN

Pediatric cancers often mimic fetal tissues and express proteins normally silenced postnatally that could serve as immune targets. We developed T cells expressing chimeric antigen receptors (CARs) targeting glypican-2 (GPC2), a fetal antigen expressed on neuroblastoma (NB) and several other solid tumors. CARs engineered using standard designs control NBs with transgenic GPC2 overexpression, but not those expressing clinically relevant GPC2 site density (∼5,000 molecules/cell, range 1-6 × 103). Iterative engineering of transmembrane (TM) and co-stimulatory domains plus overexpression of c-Jun lowered the GPC2-CAR antigen density threshold, enabling potent and durable eradication of NBs expressing clinically relevant GPC2 antigen density, without toxicity. These studies highlight the critical interplay between CAR design and antigen density threshold, demonstrate potent efficacy and safety of a lead GPC2-CAR candidate suitable for clinical testing, and credential oncofetal antigens as a promising class of targets for CAR T cell therapy of solid tumors.


Asunto(s)
Glipicanos/inmunología , Inmunoterapia Adoptiva , Neuroblastoma/tratamiento farmacológico , Receptores de Antígenos de Linfocitos T/metabolismo , Animales , Línea Celular Tumoral , Glipicanos/metabolismo , Humanos , Inmunoterapia/métodos , Neuroblastoma/patología , Receptores de Antígenos de Linfocitos T/inmunología , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
4.
Cancer Metastasis Rev ; 40(1): 173-189, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33404859

RESUMEN

Neuroblastoma (NB) is a pediatric cancer of the sympathetic nervous system and one of the most common solid tumors in infancy. Amplification of MYCN, copy number alterations, numerical and segmental chromosomal aberrations, mutations, and rearrangements on a handful of genes, such as ALK, ATRX, TP53, RAS/MAPK pathway genes, and TERT, are attributed as underlying causes that give rise to NB. However, the heterogeneous nature of the disease-along with the relative paucity of recurrent somatic mutations-reinforces the need to understand the interplay of genetic factors and epigenetic alterations in the context of NB. Epigenetic mechanisms tightly control gene expression, embryogenesis, imprinting, chromosomal stability, and tumorigenesis, thereby playing a pivotal role in physio- and pathological settings. The main epigenetic alterations include aberrant DNA methylation, disrupted patterns of posttranslational histone modifications, alterations in chromatin composition and/or architecture, and aberrant expression of non-coding RNAs. DNA methylation and demethylation are mediated by DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) proteins, respectively, while histone modifications are coordinated by histone acetyltransferases and deacetylases (HATs, HDACs), and histone methyltransferases and demethylases (HMTs, HDMs). This article focuses predominately on the crosstalk between the epigenome and NB, and the implications it has on disease diagnosis and treatment.


Asunto(s)
Epigenoma , Neuroblastoma , Niño , Metilación de ADN , Epigénesis Genética , Histona Desacetilasas/metabolismo , Humanos , Neuroblastoma/genética
5.
EMBO Rep ; 21(10): e49425, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32929842

RESUMEN

The host immune response is a fundamental mechanism for attenuating cancer progression. Here we report a role for the DNA demethylase and tumor suppressor TET2 in host anti-tumor immunity. Deletion of Tet2 in mice elevates IL-6 levels upon tumor challenge. Elevated IL-6 stimulates immunosuppressive granulocytic myeloid-derived suppressor cells (G-MDSCs), which in turn reduce CD8+ T cells upon tumor challenge. Consequently, systematic knockout of Tet2 in mice leads to accelerated syngeneic tumor growth, which is constrained by anti-PD-1 blockade. Removal of G-MDSCs by the anti-mouse Ly6g antibodies restores CD8+ T-cell numbers in Tet2-/- mice and reboots their anti-tumor activity. Importantly, anti-IL-6 antibody treatment blocks the expansion of G-MDSCs and inhibits syngeneic tumor growth. Collectively, these findings reveal a TET2-mediated IL-6/G-MDSCs/CD8+ T-cell immune response cascade that safeguards host adaptive anti-tumor immunity, offering a cell non-autonomous mechanism of TET2 for tumor suppression.


Asunto(s)
Células Supresoras de Origen Mieloide , Neoplasias , Inmunidad Adaptativa , Animales , Linfocitos T CD8-positivos , Recuento de Células , Proteínas de Unión al ADN/genética , Dioxigenasas , Ratones , Neoplasias/genética , Proteínas Proto-Oncogénicas/genética
6.
Clin Epigenetics ; 12(1): 129, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32854783

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is the most common type of dementia, and patients with advanced AD frequently lose the ability to identify family members. The fusiform gyrus (FUS) of the brain is critical in facial recognition. However, AD etiology in the FUS of AD patients is poorly understood. New analytical strategies are needed to reveal the genetic and epigenetic basis of AD in FUS. RESULTS: A complex of new analytical paradigms that integrates an array of transcriptomes and methylomes of normal controls, AD patients, and "AD-in-dish" models were used to identify genetic and epigenetic signatures of AD in FUS. Here we identified changes in gene expression that are specific to the FUS in brains of AD patients. These changes are closely linked to key genes in the AD network. Profiling of the methylome (5mC/5hmC/5fC/5caC) at base resolution identified 5 signature genes (COL2A1, CAPN3, COL14A1, STAT5A, SPOCK3) that exhibit perturbed expression, specifically in the FUS and display altered DNA methylome profiles that are common across AD-associated brain regions. Moreover, we demonstrate proof-of-principle that AD-associated methylome changes in these genes effectively predict the disease prognosis with enhanced sensitivity compared to presently used clinical criteria. CONCLUSIONS: This study identified a set of previously unexplored FUS-specific AD genes and their epigenetic characteristics, which may provide new insights into the molecular pathology of AD, attributing the genetic and epigenetic basis of FUS to AD development.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Epigénesis Genética/genética , Expresión Génica/genética , Lóbulo Temporal/fisiopatología , Humanos
7.
Sci Adv ; 5(8): eaaw2880, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31489368

RESUMEN

Alzheimer's disease (AD), a progressive neurodegenerative disorder, is the most common untreatable form of dementia. Identifying molecular biomarkers that allow early detection remains a key challenge in the diagnosis, treatment, and prognostic evaluation of the disease. Here, we report a novel experimental and analytical model characterizing epigenetic alterations during AD onset and progression. We generated the first integrated base-resolution genome-wide maps of the distribution of 5-methyl-cytosine (5mC), 5-hydroxymethyl-cytosine (5hmC), and 5-formyl/carboxy-cytosine (5fC/caC) in normal and AD neurons. We identified 27 AD region-specific and 39 CpG site-specific epigenetic signatures that were independently validated across our familial and sporadic AD models, and in an independent clinical cohort. Thus, our work establishes a new model and strategy to study the epigenetic alterations underlying AD onset and progression and provides a set of highly reliable AD-specific epigenetic signatures that may have early diagnostic and prognostic implications.


Asunto(s)
Enfermedad de Alzheimer/genética , Metilación de ADN/genética , ADN/genética , Epigénesis Genética/genética , 5-Metilcitosina/metabolismo , Anciano , Enfermedad de Alzheimer/metabolismo , Biomarcadores/metabolismo , Citosina/metabolismo , Progresión de la Enfermedad , Epigenómica/métodos , Femenino , Humanos , Masculino , Neuronas/metabolismo
8.
Nature ; 559(7715): 637-641, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30022161

RESUMEN

Diabetes is a complex metabolic syndrome that is characterized by prolonged high blood glucose levels and frequently associated with life-threatening complications1,2. Epidemiological studies have suggested that diabetes is also linked to an increased risk of cancer3-5. High glucose levels may be a prevailing factor that contributes to the link between diabetes and cancer, but little is known about the molecular basis of this link and how the high glucose state may drive genetic and/or epigenetic alterations that result in a cancer phenotype. Here we show that hyperglycaemic conditions have an adverse effect on the DNA 5-hydroxymethylome. We identify the tumour suppressor TET2 as a substrate of the AMP-activated kinase (AMPK), which phosphorylates TET2 at serine 99, thereby stabilizing the tumour suppressor. Increased glucose levels impede AMPK-mediated phosphorylation at serine 99, which results in the destabilization of TET2 followed by dysregulation of both 5-hydroxymethylcytosine (5hmC) and the tumour suppressive function of TET2 in vitro and in vivo. Treatment with the anti-diabetic drug metformin protects AMPK-mediated phosphorylation of serine 99, thereby increasing TET2 stability and 5hmC levels. These findings define a novel 'phospho-switch' that regulates TET2 stability and a regulatory pathway that links glucose and AMPK to TET2 and 5hmC, which connects diabetes to cancer. Our data also unravel an epigenetic pathway by which metformin mediates tumour suppression. Thus, this study presents a new model for how a pernicious environment can directly reprogram the epigenome towards an oncogenic state, offering a potential strategy for cancer prevention and treatment.


Asunto(s)
Adenilato Quinasa/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Diabetes Mellitus/metabolismo , Glucosa/metabolismo , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animales , ADN/química , ADN/metabolismo , Metilación de ADN , Diabetes Mellitus/genética , Dioxigenasas , Estabilidad de Enzimas , Epigénesis Genética , Hemoglobina Glucada/análisis , Humanos , Hiperglucemia/metabolismo , Metformina/farmacología , Metformina/uso terapéutico , Ratones , Ratones Desnudos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Fosforilación , Fosfoserina/metabolismo , Especificidad por Sustrato , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Int J Cancer ; 138(1): 137-45, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26178670

RESUMEN

Studies have shown that the calcium-sensing receptor (CaSR) mediates the antitumorigenic effects of calcium against colorectal cancer (CRC). Expression of the CaSR in colorectal tumors is often reduced. We have reported previously that silencing of CaSR in CRC is caused in part by methylation of CaSR promoter 2 and loss of histone acetylation. We investigated the impact of aberrant microRNA expression on loss of CaSR expression. A microarray study in two Caco-2 subclones (Caco2/AQ and Caco2/15) that have similar genetic background, but different CaSR expression levels (Caco2/AQ expressing more CaSR than Caco2/15), identified 22 differentially expressed microRNAs that potentially target the CaSR. We validated these results by performing gain- and loss-of-function studies with the top candidates: miR-9, miR-27a, miR-135b, and miR-146b. Modulation of miR-135b or miR-146b expression by mimicking or inhibiting their expression regulated CaSR protein levels in two different colon cancer cell lines: Caco2/AQ (moderate endogenous CaSR expression) and HT29 (low endogenous CaSR levels). Inhibition of miR-135b and miR-146b expression led to high CaSR levels and significantly reduced proliferation. In samples of colorectal tumors we observed overexpression of miR-135b and miR-146b, and this correlated inversely with CaSR expression (miR-135b: r = -0.684, p < 0.001 and miR-146b: r = -0.448, p < 0.001), supporting our in vitro findings. We demonstrate that miR-135b and miR-146b target the CaSR and reduce its expression in colorectal tumors, reducing the antiproliferative and prodifferentiating actions of calcium. This provides a new approach for finding means to prevent CaSR loss, developing better treatment strategies for CRC.


Asunto(s)
Neoplasias Colorrectales/genética , Silenciador del Gen , MicroARNs/genética , Receptores Sensibles al Calcio/genética , Células CACO-2 , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Receptores Sensibles al Calcio/metabolismo
10.
Front Physiol ; 5: 164, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24808866

RESUMEN

Epigenetic mechanisms play a crucial role in regulating gene expression. The main mechanisms involve methylation of DNA and covalent modifications of histones by methylation, acetylation, phosphorylation, or ubiquitination. The complex interplay of different epigenetic mechanisms is mediated by enzymes acting in the nucleus. Modifications in DNA methylation are performed mainly by DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) proteins, while a plethora of enzymes, such as histone acetyltransferases (HATs), histone deacetylases (HDACs), histone methyltransferases (HMTs), and histone demethylases (HDMs) regulate covalent histone modifications. In many diseases, such as cancer, the epigenetic regulatory system is often disturbed. Vitamin D interacts with the epigenome on multiple levels. Firstly, critical genes in the vitamin D signaling system, such as those coding for vitamin D receptor (VDR) and the enzymes 25-hydroxylase (CYP2R1), 1α-hydroxylase (CYP27B1), and 24-hydroxylase (CYP24A1) have large CpG islands in their promoter regions and therefore can be silenced by DNA methylation. Secondly, VDR protein physically interacts with coactivator and corepressor proteins, which in turn are in contact with chromatin modifiers, such as HATs, HDACs, HMTs, and with chromatin remodelers. Thirdly, a number of genes encoding for chromatin modifiers and remodelers, such as HDMs of the Jumonji C (JmjC)-domain containing proteins and lysine-specific demethylase (LSD) families are primary targets of VDR and its ligands. Finally, there is evidence that certain VDR ligands have DNA demethylating effects. In this review we will discuss regulation of the vitamin D system by epigenetic modifications and how vitamin D contributes to the maintenance of the epigenome, and evaluate its impact in health and disease.

11.
Int J Cancer ; 135(9): 2014-23, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24691920

RESUMEN

The calcium-sensing receptor (CaSR) is suggested to mediate the antiproliferative effects of calcium in colon. However, in colorectal cancer (CRC) the expression of the CaSR is silenced and the underlying mechanisms leading to its loss are poorly understood. We investigated whether loss of the CaSR expression in colorectal tumors is caused by DNA hypermethylation and imbalance of transcriptionally permissive/repressive histone alterations. We observed significantly lower CaSR mRNA expression (n = 65, p < 0.001) in colorectal tumors compared with the adjacent mucosa from the same patient. Immunofluorescence staining confirmed downregulation of the CaSR protein also. The CaSR promoter was methylated to a greater extent in tumors compared with adjacent mucosa as determined by bisulfite sequencing (n = 20, p < 0.01) and by pyrosequencing (n = 45, p < 0.001), and methylation correlated inversely with mRNA expression (n = 20, ρ = -0.310, p < 0.05 and n = 45, ρ = -0.588, p < 0.001). Treatments with 5-aza-2'-deoxycytidine (DAC), a DNA methyltransferase inhibitor and/or with two different histone deacetylase inhibitors, trichostatin A (TSA) or suberoylanilide hydroxamic acid (SAHA) restored the expression of CaSR in colon cancer cells. Restored CaSR expression in Coga1A and HT29 cells was functional. Inhibition of lysine-specific demethylase 1 (LSD1) to prevent demethylation of mono- and dimethylated H3K4, increased CaSR expression only marginally. Our data show that hypermethylation of the CaSR promoter and H3K9 deacetylation, but not H3K4me2 demethylation are important factors that cause silencing of the CaSR in colorectal cancer.


Asunto(s)
Neoplasias Colorrectales/genética , Metilación de ADN , Silenciador del Gen , Histonas/metabolismo , Regiones Promotoras Genéticas/genética , Receptores Sensibles al Calcio/genética , Acetilación , Anciano , Apoptosis/efectos de los fármacos , Western Blotting , Proliferación Celular/efectos de los fármacos , Inmunoprecipitación de Cromatina , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Femenino , Técnica del Anticuerpo Fluorescente , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ácidos Hidroxámicos/farmacología , Masculino , Clasificación del Tumor , Estadificación de Neoplasias , Pronóstico , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Sensibles al Calcio/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales Cultivadas
12.
J Steroid Biochem Mol Biol ; 144 Pt A: 91-5, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24120915

RESUMEN

Interleukin 6 (IL-6) and tumor necrosis factor alpha (TNFα) are proinflammatory cytokines that play a critical role in inflammatory bowel disease, as well as in colorectal tumorigenesis. We hypothesize that these cytokines modulate the expression and thus activity of the vitamin D system in colonic epithelial cells. We treated the colon cancer cell line COGA-1A for 6, 12, and 24h with 1,25-dihydroxyvitamin D3 (1,25-D3), IL-6, TNFα, and with combinations of these compounds. Using quantitative RT-PCR, we analyzed mRNA expression of genes activating and catabolizing 1,25-D3 (1α-hydroxylase (CYP27B1), 24-hydroxylase (CYP24A1)), expression of several vitamin D target genes, as well as expression of cyclooxygenase 2 (COX-2) and 15-hydroxyprostaglandin dehydrogenase. As expected, treatment with 1,25-D3 resulted in an upregulation of CYP24A1, whereas expression of CYP27B1 was not affected. Treatment with TNFα and IL-6 led to decreased expression of the vitamin D activating enzyme CYP27B1. The strong inflammatory property of TNFα was mirrored by its activation of COX-2 and inhibition of prostaglandin E2 (PGE2) catabolism. Interestingly, expression of the calcium ion channel TRPV6 was markedly decreased by TNFα. We conclude from these results that the presence of proinflammatory cytokines might impair activation of 1,25-D3, limiting its anti-inflammatory action. This article is part of a Special Issue entitled '16th Vitamin D Workshop'.


Asunto(s)
Neoplasias del Colon/metabolismo , Citocinas/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Mediadores de Inflamación/farmacología , Vitamina D/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/genética , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/metabolismo , Animales , Canales de Calcio/genética , Canales de Calcio/metabolismo , Neoplasias del Colon/genética , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Humanos , Ratones
13.
J Steroid Biochem Mol Biol ; 144 Pt A: 228-31, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24176760

RESUMEN

Anti-proliferative effects of calcium in the colon are mediated, at least in part, via the calcium-sensing receptor (CaSR), a vitamin D target gene. The expression of CaSR decreases during colorectal tumor progression and the mechanisms regulating its expression are poorly understood. The CaSR promoter harbors vitamin D elements responsive to 1,25-dihydroxyvitamin D3 (1,25D3) and NF-κB, STAT, and SP1 binding sites accounting for responsiveness to proinflammatory cytokines. Therefore, in the current study we investigated the impact of 1,25D3, tumor necrosis factor alpha (TNFα), and interleukin (IL)-6 on CaSR expression in a differentiated (Caco2/AQ) and in a moderately differentiated (Coga1A) colon cancer cell line. 1,25D3 induced CaSR expression in both cell lines. Treatment with TNFα was accompanied by a 134-fold induction of CaSR in Coga1A (p<0.01). In Caco2/AQ cells the expression of CaSR was upregulated also by IL-6 (3.5-fold). Our data demonstrated transcriptional and translational activation of the CaSR by 1,25D3, TNFα, and IL-6 in a time- and cell line-dependent manner. This article is part of a Special Issue entitled '16th Vitamin D Workshop'.


Asunto(s)
Calcitriol/farmacología , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Interleucina-6/farmacología , Receptores Sensibles al Calcio/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Animales , Conservadores de la Densidad Ósea/farmacología , Neoplasias del Colon/genética , Humanos
14.
Int J Cancer ; 133(6): 1380-8, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23463632

RESUMEN

In colorectal cancer (CRC) the vitamin D catabolizing enzyme 1,25-dihydroxyvitamin D 24-hydroxylase (CYP24A1) is overexpressed with a potentially significant, positive impact on the catabolism of 1,25-dihydroxyvitamin D3 (1,25-D3 ). However, the underlying mechanism of CYP24A1 overexpression is poorly understood. In the present study, we investigated possible causes including hypomethylation of the CYP24A1 promoter, amplification of the CYP24A1 gene locus (20q13.2), and altered expression of CYP24A1-specific transcription factors. We quantified CYP24A1 gene copy-number, performed bisulfite sequencing of the CYP24A1 promoter to assess DNA methylation, and measured mRNA expression of CYP24A1, 25-hydroxyvitamin D 1α-hydroxylase (CYP27B1), vitamin D receptor (VDR) and retinoid X receptor (RXR). We found that 77 (60%) out of 127 colorectal tumors showed increased CYP24A1 gene copy-number and that more than 6 copies of CYP24A1 correlated positively with CYP24A1 mRNA expression suggestive of a causal relationship. No differences in CYP24A1 promoter methylation were found between tumor tissue and adjacent mucosa from the same patient or between tissues with high or low mRNA expression, thus excluding DNA hypomethylation as a possible cause of CYP24A1 overexpression in CRC. Furthermore, mRNA expression of several factors involved in replication licensing positively correlated with CYP24A1 mRNA expression, raising the possibility that CYP24A1 overexpression might favor increased proliferation in tumors by suppressing local 1,25-D3 levels. We conclude that high copy-number gain is a key determinant of CYP24A1 overexpression in CRC. Other postulated causes of CYP24A1 overexpression including promoter hypomethylation and enhanced VDR and/or RXR expression do not appear to be involved.


Asunto(s)
Neoplasias Colorrectales/genética , Metilación de ADN , Dosificación de Gen , Esteroide Hidroxilasas/genética , Adulto , Anciano , Calcifediol/metabolismo , Proliferación Celular , Neoplasias Colorrectales/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Regiones Promotoras Genéticas , Proto-Oncogenes Mas , Proto-Oncogenes , ARN Mensajero/análisis , Vitamina D3 24-Hidroxilasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA