Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Microb Drug Resist ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722095

RESUMEN

The study determined the prevalence, antimicrobial resistant (AMR) determinants, and genetic characteristics of Escherichia coli and Klebsiella pneumoniae isolates from patients with diabetic foot infection (DFI) in a Tunisian hospital. A total of 26 Escherichia spp. and Klebsiella spp. isolates were recovered and identified by MALDI-TOF-MS. Antimicrobial susceptibility testing, the detection of AMR determinants and Shiga-like toxin genes, phylogenetic grouping, and molecular typing were performed. Twelve E. coli, 10 K. pneumoniae, 3 K. oxytoca, and 1 E. hermanii were isolated. A multidrug-resistant phenotype was detected in 65.4% of the isolates. About 30.8% of isolates were extended-spectrum ß-lactamase (ESBL) producers and mainly carried blaCTX-M-15 and blaCTX-M-14 genes. One blaNDM-1-producing K. pneumoniae-ST1 strain was identified. Class 1 integrons were detected in 11 isolates and 5 gene cassette arrangements were noted: dfrA1+aadA1 (n = 1), dfrA12+aadA2 (n = 3), and dfrA17+aadA5 (n = 1). Other non-ß-lactam resistance genes detected were as follows (number of isolates): aac(3')-II (3), aac(6')-Ib-cr(8), qnrB (2), qnrS (4), cmlA (2), floR (4), sul1 (11), sul2 (11), and sul3 (2). The phylogroup B1 was the most frequent (41.7%) among E. coli, and two ESBL-producing isolates corresponded to the ST131-B2 lineage. The ESBL- and carbapenemase-producing Enterobacteriaceae in DFIs are described for the first time in Tunisia.

2.
Antibiotics (Basel) ; 12(9)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37760691

RESUMEN

Carbapenem-resistant Pseudomonas aeruginosa (CRPA) are a global health concern. The antimicrobial resistance, virulence, and molecular typing of 57 CRPA isolated from 43 patients who attended a specific Tunisian hospital from September 2018 to July 2019 were analyzed. All but one were multidrug-resistant CRPA, and 77% were difficult-to-treat-resistant (DTR) isolates. The blaVIM-2 gene was detected in four strains (6.9%), and among the 36 blaGES-positive CRPA (62%), the blaGES-5 gene was the predominant variant (86%). Three strains co-harbored the blaVIM-2 and blaGES-45 genes, and seven CRPA carried the blaSHV-2a gene (14%). OprD alterations, including truncations by insertion sequences, were observed in 18 strains. Regarding the 46 class 1 integron-positive CRPA (81%), the blaGES-5 gene was located in integron In717, while the blaGES-29 and blaGES-45 genes were found in two new integrons (In2122 and In4879), and the blaVIM-2 gene was found in In1183 and the new integron In2142. Twenty-four PFGE patterns and thirteen sequence types (three new ones) were identified. The predominant serotype O:11 and exoU (81%) were mostly associated with ST235 and the new ST3385 clones. The seven blaSHV-2a-CRPA from different patients belonged to ST3385 and the same PFGE pattern. The blaGES-5- and blaVIM-2 + blaGES-45-positive CRPA recovered mostly from ICU patients belonged to the high-risk clone ST235. Our results highlight the alarming prevalence of blaGES-5- and ST235-CRPA, the co-existence of blaGES-45 and blaVIM-2, and their location within integrons favoring their dissemination.

3.
Microb Drug Resist ; 28(1): 18-22, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34348037

RESUMEN

Citrobacter freundii has acquired resistance to several antimicrobial drugs, including last-resort antibiotics affecting, therefore, clinical efficacy and causing high rates of mortality. In this study, we investigate the whole genome sequence of a carbapenem-resistant C. freundii strain isolated from the hospital environment in Tunisia. A total of 210 samples were taken using sterile swabs, from inanimate surfaces, medical devices, and care staff, during the period extended between March and April 2019. After the microbiological analysis of samples and antimicrobial susceptibility testing, only one strain identified as C. freundii showing resistance to carbapenems was selected for the whole genome sequencing. The genome analysis revealed a high-level resistance to most antibiotics. Interestingly, we have noted the coexistence of blaNDM-1 and blaVIM-48 metallo-ß-lactamase (MBL) encoding genes conferring resistance to carbapenems. Other ß-lactamases encoding genes have also been detected, including blaTEM-1, blaCMY-48, and blaOXA-1. Moreover, genes conferring resistance to aminoglycoside [aac(3)-IId, ant(3″)-Ia, aadA, aac(6')-Ib], macrolide [mph(A)], sulfonamide (sul1), trimethoprim (dfrA1), tetracycline [tet(D)], chloramphenicol [cat(B3)], rifamycin (arr-3), and quinolone (qnrB) have been revealed. The multi-locus sequence typing analysis showed that this isolate could not be assigned to an existing sequence type (ST), but it is almost identical to ST22. The plasmid investigation revealed the presence of five plasmids belonging to diverse incompatibility groups (IncFII, IncHI1A, IncHI1B, IncN, and IncX3). To the best of our knowledge, our findings report the first detection of NDM-1 and VIM-48 coproducing C. freundii in Tunisia and the second detection in the world of the blaVIM-48.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Citrobacter freundii/genética , Infección Hospitalaria/microbiología , Genes Bacterianos , Humanos , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Plásmidos , ARN Largo no Codificante/genética , Secuenciación Completa del Genoma , beta-Lactamasas
4.
Antibiotics (Basel) ; 9(12)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348867

RESUMEN

The growing number of multidrug resistant strains in Tunisia has become a serious health concern contributing to high rate of mortality and morbidity. Since current antibiotics are rapidly becoming ineffective, novel strategies to combat resistance are needed. Recently, we demonstrated that combination of a tetracycline antibiotic with various polyaminoisoprenyl adjuvants can sustain the life span and enhance the activity of these drugs against Pseudomonas aeruginosa reference strain (PA01). In the context of our continuing studies, the effective approach of antibiotic-adjuvant was investigated against a large panel of P. aeruginosa Tunisian clinical strains collected from the Military Hospital of Tunis. In this paper, we demonstrated that the combination of a farnesyl spermine compound 3 used at concentrations ranging from 2.5 to 10 µM, in the presence of doxycycline or minocycline leads to a significant decrease of P. aeruginosa antibiotic resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA