Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Annu Rev Microbiol ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684082

RESUMEN

This review explores the origins of intracellular parasitism, an intriguing facet of symbiosis, where one organism harms its host, potentially becoming deadly. We focus on three distantly related groups of single-celled eukaryotes, namely Kinetoplastea, Holomycota, and Apicomplexa, which contain multiple species-rich lineages of intracellular parasites. Using comparative analysis of morphological, physiological, and molecular features of kinetoplastids, microsporidians, and sporozoans, as well as their closest free-living relatives, we reveal the evolutionary trajectories and adaptations that enabled the transition to intracellular parasitism. Intracellular parasites have evolved various efficient mechanisms for host acquisition and exploitation, allowing them to thrive in a variety of hosts. Each group has developed unique features related to the parasitic lifestyle, involving dedicated protein families associated with host cell invasion, survival, and exit. Indeed, parallel evolution has led to distinct lineages of intracellular parasites employing diverse traits and approaches to achieve similar outcomes.

2.
J Fish Dis ; 47(6): e13933, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38400598

RESUMEN

Nodular gill disease (NGD) is an emerging condition associated with amoeba trophozoites in freshwater salmonid farms. However, unambiguous identification of the pathogens still must be achieved. This study aimed to identify the amoeba species involved in periodic NGD outbreaks in two rainbow trout (Oncorhynchus mykiss) farms in Northeastern Italy. During four episodes (February-April 2023), 88 fish were euthanized, and their gills were evaluated by macroscopic, microscopic and histopathological examination. The macroscopic and microscopic severity of the lesions and the degree of amoebae infestation were scored and statistically evaluated. One gill arch from each animal was put on non-nutrient agar (NNA) Petri dishes for amoeba isolation, cultivation and subsequent identification with SSU rDNA sequencing. Histopathology confirmed moderate to severe lesions consistent with NGD and mild to moderate amoeba infestation. The presence of amoebae was significantly correlated with lesion severity. Light microscopy of cultured amoebae strains and SSU rDNA analysis revealed the presence of a previously characterized amoeba Naegleria sp. strain GERK and several new strains: two strains from Hartmannelidae, three vannelid amoebae from the genus Ripella and cercozoan amoeba Rosculus. Despite the uncertainty in NGD etiopathogenesis and amoebae pathogenic role, identifying known and new amoebae leans towards a possible multi-aetiological origin.


Asunto(s)
Amebiasis , Enfermedades de los Peces , Branquias , Oncorhynchus mykiss , Animales , Oncorhynchus mykiss/parasitología , Enfermedades de los Peces/parasitología , Enfermedades de los Peces/epidemiología , Italia , Amebiasis/veterinaria , Amebiasis/parasitología , Branquias/parasitología , Branquias/patología , Amoeba/genética , Amoeba/aislamiento & purificación , Amoeba/clasificación , Acuicultura , Amebozoos/genética , Amebozoos/aislamiento & purificación , Amebozoos/clasificación , Amebozoos/fisiología , Filogenia
3.
Sci Rep ; 13(1): 12106, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37495605

RESUMEN

Myxozoans are a unique group of microscopic parasites that infect mainly fishes. These extremely reduced cnidarians are highly diverse and globally distributed in freshwater and marine habitats. Myxozoan diversity dimension is unknown in Mexico, a territory of an extraordinary biological diversity. This study aimed to explore, for the first time, myxozoan parasite diversity from fishes of the Neotropical region of Mexico. We performed a large morphological and molecular screening using host tissues of 22 ornamental and food fish species captured from different localities of Veracruz, Oaxaca and Chiapas. Myxozoan infections were detected in 90% of the fish species, 65% of them had 1 or 2 and 35% had 3 and up to 8 myxozoan species. Forty-one putative new species were identified using SSU rDNA phylogenetic analyses, belonging to two main lineages: polychaete-infecting (5 species) and oligochaete-infecting (36 species) myxozoans; from those we describe 4 new species: Myxidium zapotecus sp. n., Zschokkella guelaguetza sp. n., Ellipsomyxa papantla sp. n. and Myxobolus zoqueus sp. n. Myxozoan detection increased up to 6 × using molecular screening, which represents 3.7 × more species detected than by microscopy. This study demonstrated that Neotropical fishes from Mexico are hosts of a multitude of myxozoans, representing a source of emerging diseases with large implications for economic and conservation reasons.


Asunto(s)
Cnidarios , Enfermedades de los Peces , Myxobolus , Myxozoa , Enfermedades Parasitarias en Animales , Animales , Cnidarios/genética , Filogenia , México , Enfermedades Parasitarias en Animales/epidemiología , Enfermedades Parasitarias en Animales/parasitología , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/parasitología , Myxozoa/genética , Peces/genética , Myxobolus/genética , ADN Ribosómico/genética
4.
Int J Parasitol ; 52(10): 667-675, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35970383

RESUMEN

In free-living cnidarians, minicollagens are major structural components in the biogenesis of nematocysts. Recent sequence mining and proteomic analysis demonstrate that minicollagens are also expressed by myxozoans, a group of evolutionarily ancient cnidarian endoparasites. Nonetheless, the presence and abundance of nematocyst-associated genes/proteins in nematocyst morphogenesis have never been studied in Myxozoa. Here, we report the gene expression profiles of three myxozoan minicollagens, ncol-1, ncol-3, and the recently identified noncanonical ncol-5, during the intrapiscine development of Myxidium lieberkuehni, the myxozoan parasite of the northern pike, Esox lucius. Moreover, we localized the myxozoan-specific minicollagen Ncol-5 in the developing myxosporean stages by Western blotting, immunofluorescence, and immunogold electron microscopy. We found that expression of minicollagens was spatiotemporally restricted to developing nematocysts within the myxospores during sporogenesis. Intriguingly, Ncol-5 is localized in the walls of nematocysts and predominantly in nematocyst tubules. Overall, we demonstrate that despite being significantly reduced in morphology, myxozoans retain structural components associated with nematocyst development in free-living cnidarians. Furthermore, our findings have practical implications for future functional and comparative studies as minicollagens are useful markers of the developmental phase of myxozoan parasites.


Asunto(s)
Cnidarios , Myxozoa , Animales , Nematocisto , Proteómica , Colágeno/química , Colágeno/genética , Colágeno/metabolismo , Cnidarios/genética , Cnidarios/anatomía & histología , Myxozoa/genética
5.
Genome Biol Evol ; 14(8)2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35867352

RESUMEN

Polypodium hydriforme is an enigmatic parasite that belongs to the phylum Cnidaria. Its taxonomic position has been debated: whereas it was previously suggested to be part of Medusozoa, recent phylogenomic analyses based on nuclear genes support the view that P. hydriforme and Myxozoa form a clade called Endocnidozoa. Medusozoans have linear mitochondrial (mt) chromosomes, whereas myxozoans, as most metazoan species, have circular chromosomes. In this work, we determined the structure of the mt genome of P. hydriforme, using Illumina and Oxford Nanopore Technologies reads, and showed that it is circular. This suggests that P. hydriforme is not nested within Medusozoa, as this would entail linearization followed by recirculation. Instead, our results support the view that P. hydriforme is a sister clade to Myxozoa, and mt linearization in the lineage leading to medusozoans occurred after the divergence of Myxozoa + P. hydriforme. Detailed analyses of the assembled P. hydriforme mt genome show that: (1) it is encoded on a single circular chromosome with an estimated size of ∼93,000 base pairs, making it one of the largest metazoan mt genomes; (2) around 78% of the genome encompasses a noncoding region composed of several repeat types; (3) similar to Myxozoa, no mt tRNAs were identified; (4) the codon TGA is a stop codon and does not encode for tryptophan as in other cnidarians; (5) similar to myxozoan mt genomes, it is extremely fast evolving.


Asunto(s)
Cnidarios , Genoma Mitocondrial , Myxozoa , Polypodium , Animales , Cnidarios/genética , ADN Mitocondrial , Myxozoa/genética , Filogenia , Polypodium/genética
6.
Int J Parasitol ; 52(2-3): 97-110, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34302843

RESUMEN

Myxozoa represent a diverse group of microscopic cnidarian endoparasites alternating between invertebrate and vertebrate hosts. Of the approximately 2,600 species described predominantly from teleost fish, only 1.8% have been reported from cartilaginous fishes (Elasmobranchii). As ancestral vertebrate hosts of myxozoans, elasmobranchs may have played an important role in myxozoan evolution, however, they are also some of the largest vertebrate hosts known for this group of parasites. We screened 50 elasmobranchs belonging to nine species and seven families, from various geographical areas, for myxozoan infection. We found a 22% overall prevalence of myxozoans in elasmobranchs and describe five species new to science. We investigated, for the first known time, the evolution of spore size within three phylogenetic clades, Ceratomyxa, Sphaerospora sensu stricto and Parvicapsula. We found that spores from elasmobranch-infecting myxozoans were on average 4.8× (Ceratomyxa), 2.2× (Parvicapsula clade) and 1.8× (Sphaerospora sensu stricto except polysporoplasmic Sphaerospora spp.) larger than those from teleosts. In all analysed clades, spore size was correlated with phylogenetic position. In ceratomyxids, it was further strongly positively correlated with fish body size and habitat depth, independent of cellular composition of the spores and phylogenetic position in the tree. While in macroparasites a host size-correlated increase in parasite size occurs on a large scale and is often related to improved exploitation of host resources, in microscopic parasites size ranges vary at the scale of a few micrometres, disproportionate to the available additional space in a large host. We discuss the ecological role of these changes with regard to transmission under high pressure and an invertebrate fauna that is adapted to deeper marine habitats.


Asunto(s)
Elasmobranquios , Enfermedades de los Peces , Myxozoa , Parásitos , Enfermedades Parasitarias en Animales , Animales , Enfermedades de los Peces/parasitología , Peces/parasitología , Humanos , Myxozoa/genética , Enfermedades Parasitarias en Animales/parasitología , Filogenia , Esporas
7.
BMC Genomics ; 22(1): 198, 2021 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-33743585

RESUMEN

BACKGROUND: Lineage-specific gene expansions represent one of the driving forces in the evolutionary dynamics of unique phylum traits. Myxozoa, a cnidarian subphylum of obligate parasites, are evolutionarily altered and highly reduced organisms with a simple body plan including cnidarian-specific organelles and polar capsules (a type of nematocyst). Minicollagens, a group of structural proteins, are prominent constituents of nematocysts linking Myxozoa and Cnidaria. Despite recent advances in the identification of minicollagens in Myxozoa, the evolutionary history and diversity of minicollagens in Myxozoa and Cnidaria remain elusive. RESULTS: We generated new transcriptomes of two myxozoan species using a novel pipeline for filtering of closely related contaminant species in RNA-seq data. Mining of our transcriptomes and published omics data confirmed the existence of myxozoan Ncol-4, reported only once previously, and revealed a novel noncanonical minicollagen, Ncol-5, which is exclusive to Myxozoa. Phylogenetic analyses support a close relationship between myxozoan Ncol-1-3 with minicollagens of Polypodium hydriforme, but suggest independent evolution in the case of the myxozoan minicollagens Ncol-4 and Ncol-5. Additional genome- and transcriptome-wide searches of cnidarian minicollagens expanded the dataset to better clarify the evolutionary trajectories of minicollagen. CONCLUSIONS: The development of a new approach for the handling of next-generation data contaminated by closely related species represents a useful tool for future applications beyond the field of myxozoan research. This data processing pipeline allowed us to expand the dataset and study the evolution and diversity of minicollagen genes in Myxozoa and Cnidaria. We identified a novel type of minicollagen in Myxozoa (Ncol-5). We suggest that the large number of minicollagen paralogs in some cnidarians is a result of several recent large gene multiplication events. We revealed close juxtaposition of minicollagens Ncol-1 and Ncol-4 in myxozoan genomes, suggesting their common evolutionary history. The unique gene structure of myxozoan Ncol-5 suggests a specific function in the myxozoan polar capsule or tubule. Despite the fact that myxozoans possess only one type of nematocyst, their gene repertoire is similar to those of other cnidarians.


Asunto(s)
Myxozoa , Parásitos , Animales , Genoma , Estilo de Vida , Myxozoa/genética , Filogenia
8.
Folia Parasitol (Praha) ; 682021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33576748

RESUMEN

Myxozoan parasites of the genus Kudoa Meglitsch, 1947 are associated with post-mortem tissue degradation that causes great financial losses to commercial fisheries. Kudoa thyrsites (Gilchrist, 1924) is a species with a very wide host range including commercial tunas, mackerels, salmonids and flatfishes. A sample of 190 fishes of 18 species from the Madeira Archipelago and 30 Atlantic chub mackerel, Scomber colias Gmelin, and 30 blue whiting, Micromesistius poutassou (Risso), from the Portuguese mainland coast were examined for the presence of species of Kudoa. The prevalence of Kudoa spp. was 80% in M. poutassou and 60% in S. colias. No spore was detected in S. colias from Madeira, which was confirmed by specific PCR screening of the muscle from all individuals of S. colias. SSU rDNA analysis revealed that M. poutassou and S. colias from the Portuguese mainland coast were infected with K. thyrsites, an economically important myxozoan parasite. Both sequences were identical with sequences of the eastern Atlantic K. thyrsites genotype, including that from the type host of this parasite. This is the first report of K. thyrsites from M. poutassou and S. colias. The fact that spores of species of Kudoa were not detected in fishes screened in the Madeira Archipelago may be explained by various ecological factors, such as the absence of a continental shelf, a short insular shelf, and oceanic waters with low productivity, all resulting in reduced abundance of benthic organisms. Consequently, it is possible that as yet unknown annelid definitive hosts of Kudoa spp. are absent or very rare near Madeiran coasts.


Asunto(s)
Enfermedades de los Peces/parasitología , Peces/parasitología , Myxozoa , Animales , ADN Ribosómico/genética , Gadiformes/parasitología , Genes Protozoarios , Myxozoa/clasificación , Myxozoa/genética , Myxozoa/aislamiento & purificación , Perciformes/parasitología , Filogenia , Portugal/epidemiología , Prevalencia , Esporas/citología
9.
Microorganisms ; 8(10)2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003479

RESUMEN

We studied the genetic variability of serine protease inhibitors (serpins) of Myxozoa, microscopic endoparasites of fish. Myxozoans affect the health of both farmed and wild fish populations, causing diseases and mortalities. Despite their global impact, no effective protection exists against these parasites. Serpins were reported as important factors for host invasion and immune evasion, and as promising targets for the development of antiparasitic therapies. For the first time, we identified and aligned serpin sequences from high throughput sequencing datasets of ten myxozoan species, and analyzed 146 serpins from this parasite group together with those of other taxa phylogenetically, to explore their relationship and origins. High intra- and interspecific variability was detected among the examined serpins. The average sequence identity was 25-30% only. The conserved domains (i.e., motif and signature) showed taxon-level differences. Serpins clustered according to taxonomy rather than to serpin types, and myxozoan serpins seemed to be highly divergent from that of other taxa. None of them clustered with their closest relative free-living cnidarians. The genetic distinction of myxozoan serpins further strengthens the idea of an independent origin of Myxozoa, and may indicate novel protein functions potentially related to parasitism in this animal group.

10.
Folia Parasitol (Praha) ; 672020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32764187

RESUMEN

Myxobolus pseudodispar Gorbunova, 1936 (Myxozoa) was originally described as a parasite of common roach, Rutilus rutilus (Linnaeus), with developing stages in muscles and spores disseminated in macrophage centres of different organs and tissues. Later, this parasite was described from several other cyprinids, but with relatively large intraspecific differences based on SSU rDNA gene sequences. Within our long-term study on myxozoan biodiversity, we performed a broad microscopic and molecular screening of various freshwater fish species (over 450 specimens, 36 species) from different localities. We investigated the cryptic species status of M. pseudodispar. Our analysis revealed four new unique SSU rDNA sequences of M. pseudodispar as well as an infection in new fish host species. Myxobolus pseudodispar sequence analysis showed clear phylogenetic grouping according to fish host criterion forming 13 well-recognised clades. Using 1% SSU rDNA-based genetic distance criterion, at least ten new species of Myxobolus Bütschli, 1882 may be recognised in the group of M. pseudodispar sequences. Our analysis showed the paraphyletic character of M. pseudodispar sequences and the statistical tests rejected hypothetical tree topology with the monophyletic status of the M. pseudodispar group. Myxobolus pseudodispar represents a species complex and it is a typical example of myxozoan hidden diversity phenomenon confirming myxozoans as an evolutionary very successful group of parasites with a great ability to adapt to a new hosts with subsequent speciation events.


Asunto(s)
Biodiversidad , Especificidad del Huésped , Interacciones Huésped-Parásitos , Myxobolus/clasificación , Myxobolus/fisiología , Enfermedades Parasitarias en Animales/parasitología , Animales , Evolución Biológica , ADN Ribosómico/análisis
11.
Mol Biol Evol ; 37(6): 1775-1789, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32101294

RESUMEN

Evidence accumulates that the functional plasticity of insulin and insulin-like growth factor signaling in insects could spring, among others, from the multiplicity of insulin receptors (InRs). Their multiple variants may be implemented in the control of insect polyphenism, such as wing or caste polyphenism. Here, we present a comprehensive phylogenetic analysis of insect InR sequences in 118 species from 23 orders and investigate the role of three InRs identified in the linden bug, Pyrrhocoris apterus, in wing polymorphism control. We identified two gene clusters (Clusters I and II) resulting from an ancestral duplication in a late ancestor of winged insects, which remained conserved in most lineages, only in some of them being subject to further duplications or losses. One remarkable yet neglected feature of InR evolution is the loss of the tyrosine kinase catalytic domain, giving rise to decoys of InR in both clusters. Within the Cluster I, we confirmed the presence of the secreted decoy of insulin receptor in all studied Muscomorpha. More importantly, we described a new tyrosine kinase-less gene (DR2) in the Cluster II, conserved in apical Holometabola for ∼300 My. We differentially silenced the three P. apterus InRs and confirmed their participation in wing polymorphism control. We observed a pattern of Cluster I and Cluster II InRs impact on wing development, which differed from that postulated in planthoppers, suggesting an independent establishment of insulin/insulin-like growth factor signaling control over wing development, leading to idiosyncrasies in the co-option of multiple InRs in polyphenism control in different taxa.


Asunto(s)
Evolución Biológica , Insectos/genética , Receptor de Insulina/genética , Alas de Animales/anatomía & histología , Animales , Femenino , Duplicación de Gen , Heterópteros/genética , Heterópteros/crecimiento & desarrollo , Insectos/anatomía & histología , Masculino , Alas de Animales/crecimiento & desarrollo
12.
Biology (Basel) ; 9(1)2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31906274

RESUMEN

It is assumed that complex life cycles in cnidarian parasites belonging to the Myxozoa result from incorporation of vertebrates into simple life cycles exploiting aquatic invertebrates. However, nothing is known about the driving forces and implementation of this event, though it fostered massive diversification. We performed a comprehensive search for myxozoans in evolutionary ancient fishes (Chondrichthyes), and more than doubled existing 18S rDNA sequence data, discovering seven independent phylogenetic lineages. We performed cophylogenetic and character mapping methods in the largest monophyletic dataset and demonstrate that host and parasite phylogenies are strongly correlated, and that tectonic changes may explain phylogeographic clustering in recent skates and softnose skates, in the Atlantic. The most basal lineages of myxozoans inhabit the bile of chondrichthyans, an immunologically privileged site and protective niche, easily accessible from the gut via the bile duct. We hypothesize that feed-integration is a likely mechanism of host acquisition, an idea supported by feeding habits of chimaeras and ancient sharks and by multiple entries of different parasite lineages from invertebrates into the new host group. We provide exciting first insights into the early evolutionary history of ancient metazoan parasites in a host group that embodies more evolutionary distinctiveness than most other vertebrates.

13.
Int J Parasitol ; 49(7): 523-530, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31077679

RESUMEN

Genera Myxobolus Bütschli, 1882 and Henneguya Thélohan, 1892 (Myxobolidae) are specious myxozoan genera. They comprise nearly half of overall known myxozoan species diversity. A typical spore feature of Henneguya is the presence of two caudal appendages of the spore valves, which distinguishes them from species of the genus Myxobolus. Several Myxobolus spp., however, were reported to show aberrant spores with Henneguya-like caudal appendages. We found such aberrant spores in Myxobolus tsangwuensis and Myxobolus wulii. We studied the ultrastructure of M. wulii and Myxobolus oralis spores with caudal appendages by transmission electron microscopy (TEM). TEM of these aberrant spores revealed that their caudal appendages have the same ultrastructure as the appendages of Henneguya spp. Small caudal appendages of M. wulii spores observed only on TEM suggested that this character may be often overlooked and more Myxobolus species potentially have the ability to express the caudal appendages on the myxospore. In order to trace the evolution of this character, we performed broad phylogenetic analysis of all species of the family Myxobolidae which are available in GenBank including nearly 300 taxa. We found at least eight independent evolutionary origins of spores with two appendages, three origins of a single appendage and 12 apparent secondary losses of the spore projections. Therefore, genus Henneguya with typical two-tailed myxospores is polyphyletic, however a majority of its species has a common ancestor and groups in the second largest subclade of the Myxobolus clade. We also mapped the biological characteristics (host, site of infection and environment) of Myxobolidae species on the phylogenetic tree. We revealed an evident host-associated evolutionary pattern in all parts of the Myxobolus clade with a distinct and species-rich subclade containing almost exclusively species infecting species of the Order Cypriniformes.


Asunto(s)
Extensiones de la Superficie Celular/ultraestructura , Myxozoa/clasificación , Myxozoa/ultraestructura , Filogenia , Esporas Protozoarias/clasificación , Esporas Protozoarias/ultraestructura , Animales , Microscopía Electrónica de Transmisión , Myxozoa/genética , Esporas Protozoarias/genética
14.
J Invertebr Pathol ; 162: 43-54, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30753848

RESUMEN

Microsporidia are among the most common microparasites of cladocerans and have potentially significant impact on host populations. However, many of these pathogens are known only from molecular-based studies. We provide ultrastructural data supported by molecular phylogeny for a common microsporidium infecting the Daphnia longispina complex, important planktonic filter-feeders in reservoirs and ponds in the temperate Holarctic region. This parasite, previously characterized only by molecular means, infects adipose cells around the Daphnia midgut and eventually fills the centre of the host body with ovoid-shaped spores. A new microsporidian genus and species belonging to the Agglomeratidae superclade is described as Pseudoberwaldia daphniae gen. et sp. nov. Molecular data indicate its widespread presence in Central European reservoirs (reported as isolate "MIC1") but also in Swedish coastal rockpools ("Ängskärs-klubben"). The most closely related lineage was reported from a caddisfly larva; we thus speculate that this taxon may have an insect secondary host in its life cycle. Morphological characterization and differential diagnosis of most commonly encountered microsporidian taxa infecting hosts in the D. longispina complex in Europe opens new possibilities for studies of their ecological and evolutionary interactions.


Asunto(s)
Daphnia/microbiología , Microsporidios/clasificación , Animales , Clasificación , ADN Ribosómico , Europa (Continente) , Estadios del Ciclo de Vida , Filogenia
15.
J Invertebr Pathol ; 159: 95-104, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30300631

RESUMEN

Microsporidia (Opisthosporidia, Microsporidia) are frequent parasites of planktonic cladocerans, including Daphnia (Crustacea, Branchiopoda). Analysis of available molecular data (ITS region and partial ssu and lsu rDNA) of these parasites indicates that many microsporidia infecting daphnids have a common ancestor and represent a large clade, which splits during evolution into a number of well supported subclades. These subclades are cytologically different but may be most conveniently characterised by their specific ITS barcode. We have analysed one of these subclades and we describe a new microsporidian genus and species combination, and assemble a large group of structurally indistinguishable microsporidian parasites that infect adipose cells of their hosts and form pyriform spores of a certain type ("obtuse spores"). Obtuse spores are non-infectious by feeding to their crustacean hosts and it is plausible that microsporidia forming them actually are parasites of insects with aquatic larval stages, with an obligate two-host life cycle, analogous to the Amblyospora life cycle involving copepods and mosquitoes.


Asunto(s)
Daphnia/parasitología , Microsporidios/clasificación , Microsporidios/genética , Animales , ADN de Hongos/análisis , Filogenia
16.
Parasite ; 25: 47, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30207267

RESUMEN

During a survey on the myxosporean fauna of Rajiformes from the Atlantic coast of Argentina, in waters off Buenos Aires Province (34°-42°S; 53°-62°W), the gall bladders of 217 specimens belonging to seven species of skates, representatives of two families, were examined. As a result, three species of Chloromyxum Mingazzini, 1890, namely C. atlantoraji n. sp., C. zearaji n. sp. and C. riorajum Azevedo, Casal, Garcia, Matos, Teles-Grilo and Matos, 2009 were found infecting three endemic host species, the spotback skate Atlantoraja castelnaui (Arhynchobatidae), the yellownose skate Zearaja chilensis (Rajidae) and the Rio skate Rioraja agassizii (Arhynchobatidae), respectively. These species were described based on myxospore morphology and morphometry characterization, as well as by providing their small subunit ribosomal DNA (SSU rDNA) sequences. The SSU rDNA-based phylogenetic analyses showed that these three species constituted a well-established monophyletic subclade within the marine Chloromyxum clade, while branches subtending the other Chloromyxum species were poorly resolved or unresolved, independently of the host taxonomic identities (Carchariniformes, Myliobatiformes, Orectolobiformes, Pristiophoriformes, Rajiformes, Squaliformes and Torpediniformes) and/or host geographic distribution (Atlantic coast of Portugal, Atlantic coast of the USA, Australian waters or Mediterranean Sea). The possible causes of these discrepancies are discussed, providing new insights into the phylogeny of the marine Chloromyxum clade.


Asunto(s)
Enfermedades de los Peces/epidemiología , Myxozoa/clasificación , Myxozoa/aislamiento & purificación , Enfermedades Parasitarias en Animales/epidemiología , Filogenia , Rajidae/parasitología , Animales , Argentina/epidemiología , Secuencia de Bases , ADN Ribosómico/genética , Enfermedades de los Peces/parasitología , Microscopía Electrónica de Rastreo , Myxozoa/genética , Océanos y Mares , Enfermedades Parasitarias en Animales/parasitología , Especificidad de la Especie
17.
Parasit Vectors ; 11(1): 347, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29903034

RESUMEN

BACKGROUND: Myxozoa are extremely diverse microscopic parasites belonging to the Cnidaria. Their life-cycles alternate between vertebrate and invertebrate hosts, predominantly in aquatic habitats. Members of the phylogenetically well-defined Sphaerospora (sensu stricto) clade predominantly infect the urinary system of marine and freshwater fishes and amphibians. Sphaerosporids are extraordinary due to their extremely long and unique insertions in the variable regions of their 18S and 28S rDNA genes and due to the formation of motile proliferative stages in the hosts' blood. To date, DNA sequences of only 19 species have been obtained and information on the patterns responsible for their phylogenetic clustering is limited. METHODS: We screened 549 fish kidney samples from fish of various geographical locations, mainly in central Europe, to investigate sphaerosporid biodiversity microscopically and by 18S rDNA sequences. We performed multiple phylogenetic analyses to explore phylogenetic relationships and evolutionary trends within the Sphaerospora (s.s.) clade, by matching host and habitat features to the resultant 18S rDNA trees. The apparent co-clustering of species from related fish hosts inspired us to further investigate host-parasite co-diversification, using tree-based (CoRE-PA) and distance-based (ParaFit) methods. RESULTS: Our study considerably increased the number of 18S rDNA sequence data for Sphaerospora (s.s.) by sequencing 17 new taxa. Eight new species are described and one species (Sphaerospora diminuta Li & Desser, 1985) is redescribed, accompanied by sufficient morphological data. Phylogenetic analyses showed that sphaerosporids cluster according to their vertebrate host order and habitat, but not according to geography. Cophylogenetic analyses revealed a significant congruence between the phylogenetic trees of sphaerosporids and of their vertebrate hosts and identified Cypriniformes as a host group of multiple parasite lineages and with high parasite diversity. CONCLUSIONS: This study significantly contributed to our knowledge of the biodiversity and evolutionary history of the members of the Sphaerospora (s.s.) clade. The presence of two separate phylogenetic lineages likely indicates independent historical host entries, and the remarkable overlap of the larger clade with vertebrate phylogeny suggests important coevolutionary adaptations. Hyperdiversification of sphaerosporids in cypriniform hosts, which have undergone considerable radiations themselves, points to host-driven diversification.


Asunto(s)
Biodiversidad , Enfermedades de los Peces/parasitología , Myxozoa/genética , Myxozoa/aislamiento & purificación , Enfermedades Parasitarias en Animales/parasitología , Filogenia , Animales , Evolución Biológica , Cnidarios , ADN Ribosómico/genética , Peces/clasificación , Peces/genética , Peces/parasitología , Myxozoa/clasificación , Myxozoa/fisiología , Enfermedades Parasitarias en Animales/genética
18.
PLoS One ; 13(3): e0194042, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29561884

RESUMEN

INTRODUCTION: Intertidal rock pools where fish and invertebrates are in constant close contact due to limited space and water level fluctuations represent ideal conditions to promote life cycles in parasites using these two alternate hosts and to study speciation processes that could contribute to understanding the roles of parasitic species in such ecosystems. MATERIAL AND METHODS: Gall bladder and liver samples from five clinid fish species (Blenniiformes: Clinidae) were morphologically and molecularly examined to determine the diversity, prevalence, distribution and host specificity of Ceratomyxa parasites (Cnidaria: Myxozoa) in intertidal habitats along the coast of South Africa. Phylogenetic relationships of clinid ceratomyxids based on the SSU rDNA, LSU rDNA and ITS regions were assessed additionally to the investigation of population genetic structure of Ceratomyxa cottoidii and subsequent comparison with the data known from type fish host Clinus cottoides. RESULTS AND DISCUSSION: Seven Ceratomyxa species including previously described Ceratomyxa dehoopi and C. cottoidii were recognized in clinids. They represent a diverse group of rapidly evolving, closely related species with a remarkably high prevalence in their hosts, little host specificity and frequent concurrent infections, most probably as a result of parasite radiation after multiple speciation events triggered by limited host dispersal within restricted spaces. C. cottoidii represents the most common clinid parasite with a population structure characterized by young expanding populations in the south west and south east coast and by older populations in equilibrium on the west coast of its distribution. Parasite and fish host population structures show overlapping patterns and are very likely affected by similar oceanographic barriers possibly due to reduced host dispersal enhancing parasite community differentiation. While fish host specificity had little impact on parasite population structure, the habitat preference of the alternate invertebrate host as well as tidal water exchange may be additional crucial variables affecting the dispersal and associated population structure of C. cottoidii.


Asunto(s)
Interacciones Huésped-Parásitos/genética , Interacciones Huésped-Parásitos/fisiología , Estadios del Ciclo de Vida/genética , Myxozoa/clasificación , Myxozoa/genética , Parásitos/clasificación , Parásitos/genética , Animales , ADN Ribosómico/genética , Enfermedades de los Peces/parasitología , Peces/parasitología , Genética de Población/métodos , Enfermedades Parasitarias en Animales/parasitología , Filogenia , Sudáfrica
19.
Mol Ecol ; 27(7): 1651-1666, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29575260

RESUMEN

The relationships between parasites and their hosts are intimate, dynamic and complex; the evolution of one is inevitably linked to the other. Despite multiple origins of parasitism in the Cnidaria, only parasites belonging to the Myxozoa are characterized by a complex life cycle, alternating between fish and invertebrate hosts, as well as by high species diversity. This inspired us to examine the history of adaptive radiations in myxozoans and their hosts by determining the degree of congruence between their phylogenies and by timing the emergence of myxozoan lineages in relation to their hosts. Recent genomic analyses suggested a common origin of Polypodium hydriforme, a cnidarian parasite of acipenseriform fishes, and the Myxozoa, and proposed fish as original hosts for both sister lineages. We demonstrate that the Myxozoa emerged long before fish populated Earth and that phylogenetic congruence with their invertebrate hosts is evident down to the most basal branches of the tree, indicating bryozoans and annelids as original hosts and challenging previous evolutionary hypotheses. We provide evidence that, following invertebrate invasion, fish hosts were acquired multiple times, leading to parallel cospeciation patterns in all major phylogenetic lineages. We identify the acquisition of vertebrate hosts that facilitate alternative transmission and dispersion strategies as reason for the distinct success of the Myxozoa, and identify massive host specification-linked parasite diversification events. The results of this study transform our understanding of the origins and evolution of parasitism in the most basal metazoan parasites known.


Asunto(s)
Biodiversidad , Evolución Biológica , Cnidarios/parasitología , Myxozoa/fisiología , Animales , Interacciones Huésped-Parásitos , Funciones de Verosimilitud , Filogenia , Factores de Tiempo , Vertebrados/parasitología
20.
Acta Parasitol ; 62(4): 858-869, 2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29035867

RESUMEN

We examined 34 lepidopteran species belonging to 12 families to determine presence and prevalence of microsporidian pathogens. The insects were collected from May 2009 to July 2012 from 44 sites in Bulgaria. Nosema species were isolated from Archips xylosteana, Tortrix viridana, Operophtera brumata, Orthosia cerasi, and Orthosia cruda. Endoreticulatus sp. was isolated from Eilema complana. The prevalence of all isolates in their hosts was low and ranged from 1.0% to 5.3%. Phylogenetic analyses of the new isolates based on SSU rDNA are presented.


Asunto(s)
Lepidópteros/parasitología , Microsporidios/fisiología , Animales , Bulgaria , Interacciones Huésped-Parásitos , Microsporidios/clasificación , Microsporidios/genética , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA