Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 14: 1367359, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660488

RESUMEN

Cryptosporidium parvum is a common cause of a zoonotic disease and a main cause of diarrhea in newborns. Effective drugs or vaccines are still lacking. Oocyst is the infective form of the parasite; after its ingestion, the oocyst excysts and releases four sporozoites into the host intestine that rapidly attack the enterocytes. The membrane protein CpRom1 is a large rhomboid protease that is expressed by sporozoites and recognized as antigen by the host immune system. In this study, we observed the release of CpRom1 with extracellular vesicles (EVs) that was not previously described. To investigate this phenomenon, we isolated and resolved EVs from the excystation medium by differential ultracentrifugation. Fluorescence flow cytometry and transmission electron microscopy (TEM) experiments identified two types of sporozoite-derived vesicles: large extracellular vesicles (LEVs) and small extracellular vesicles (SEVs). Nanoparticle tracking analysis (NTA) revealed mode diameter of 181 nm for LEVs and 105 nm for SEVs, respectively. Immunodetection experiments proved the presence of CpRom1 and the Golgi protein CpGRASP in LEVs, while immune-electron microscopy trials demonstrated the localization of CpRom1 on the LEVs surface. TEM and scanning electron microscopy (SEM) showed that LEVs were generated by means of the budding of the outer membrane of sporozoites; conversely, the origin of SEVs remained uncertain. Distinct protein compositions were observed between LEVs and SEVs as evidenced by their corresponding electrophoretic profiles. Indeed, a dedicated proteomic analysis identified 5 and 16 proteins unique for LEVs and SEVs, respectively. Overall, 60 proteins were identified in the proteome of both types of vesicles and most of these proteins (48 in number) were already identified in the molecular cargo of extracellular vesicles from other organisms. Noteworthy, we identified 12 proteins unique to Cryptosporidium spp. and this last group included the immunodominant parasite antigen glycoprotein GP60, which is one of the most abundant proteins in both LEVs and SEVs.


Asunto(s)
Cryptosporidium parvum , Vesículas Extracelulares , Proteínas Protozoarias , Esporozoítos , Vesículas Extracelulares/metabolismo , Cryptosporidium parvum/metabolismo , Esporozoítos/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/análisis , Microscopía Electrónica de Transmisión , Animales , Criptosporidiosis/parasitología , Humanos , Proteoma/análisis , Proteómica , Citometría de Flujo
2.
J Extracell Vesicles ; 12(12): e12392, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38072803

RESUMEN

Exosomes are among the most puzzling vehicles of intercellular communication, but several crucial aspects of their biogenesis remain elusive, primarily due to the difficulty in purifying vesicles with similar sizes and densities. Here we report an effective methodology for labelling small extracellular vesicles (sEV) using Bodipy FL C16, a fluorescent palmitic acid analogue. In this study, we present compelling evidence that the fluorescent sEV population derived from Bodipy C16-labelled cells represents a discrete subpopulation of small exosomes following an intracellular pathway. Rapid cellular uptake and metabolism of Bodipy C16 resulted in the incorporation of fluorescent phospholipids into intracellular organelles specifically excluding the plasma membrane and ultimately becoming part of the exosomal membrane. Importantly, our fluorescence labelling method facilitated accurate quantification and characterization of exosomes, overcoming the limitations of nonspecific dye incorporation into heterogeneous vesicle populations. The characterization of Bodipy-labelled exosomes reveals their enrichment in tetraspanin markers, particularly CD63 and CD81, and in minor proportion CD9. Moreover, we employed nanoFACS sorting and electron microscopy to confirm the exosomal nature of Bodipy-labelled vesicles. This innovative metabolic labelling approach, based on the fate of a fatty acid, offers new avenues for investigating exosome biogenesis and functional properties in various physiological and pathological contexts.


Asunto(s)
Exosomas , Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Ácido Palmítico/metabolismo , Exosomas/metabolismo , Transporte Biológico
3.
Int J Mol Sci ; 21(17)2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32878276

RESUMEN

Immunosuppression at tumor microenvironment (TME) is one of the major obstacles to be overcome for an effective therapeutic intervention against solid tumors. Tumor-associated macrophages (TAMs) comprise a sub-population that plays multiple pro-tumoral roles in tumor development including general immunosuppression, which can be identified in terms of high expression of mannose receptor (MR or CD206). Immunosuppressive TAMs, like other macrophage sub-populations, display functional plasticity that allows them to be re-programmed to inflammatory macrophages. In order to mitigate immunosuppression at the TME, several efforts are ongoing to effectively re-educate pro-tumoral TAMs. Extracellular vesicles (EVs), released by both normal and tumor cells types, are emerging as key mediators of the cell to cell communication and have been shown to have a role in the modulation of immune responses in the TME. Recent studies demonstrated the enrichment of high mannose glycans on the surface of small EVs (sEVs), a subtype of EVs of endosomal origin of 30-150 nm in diameter. This characteristic renders sEVs an ideal tool for the delivery of therapeutic molecules into MR/CD206-expressing TAMs. In this review, we report the most recent literature data highlighting the critical role of TAMs in tumor development, as well as the experimental evidences that has emerged from the biochemical characterization of sEV membranes. In addition, we propose an original way to target immunosuppressive TAMs at the TME by endogenously engineered sEVs for a new therapeutic approach against solid tumors.


Asunto(s)
Vesículas Extracelulares/inmunología , Tolerancia Inmunológica/inmunología , Lectinas Tipo C/metabolismo , Macrófagos/inmunología , Lectinas de Unión a Manosa/metabolismo , Neoplasias/inmunología , Receptores de Superficie Celular/metabolismo , Microambiente Tumoral/inmunología , Animales , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patología , Humanos , Macrófagos/metabolismo , Macrófagos/patología , Receptor de Manosa , Neoplasias/metabolismo , Neoplasias/patología
4.
Int J Mol Sci ; 19(5)2018 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-29783743

RESUMEN

In this study, we report how the cholera toxin (CT) A subunit (CTA), the enzyme moiety responsible for signaling alteration in host cells, enters the exosomal pathway, secretes extracellularly, transmits itself to a cell population. The first evidence for long-term transmission of CT's toxic effect via extracellular vesicles was obtained in Chinese hamster ovary (CHO) cells. To follow the CT intracellular route towards exosome secretion, we used a novel strategy for generating metabolically-labeled fluorescent exosomes that can be counted by flow cytometry assay (FACS) and characterized. Our results clearly show the association of CT with exosomes, together with the heat shock protein 90 (HSP90) and Protein Disulfide Isomerase (PDI) molecules, proteins required for translocation of CTA across the ER membrane into the cytoplasm. Confocal microscopy showed direct internalization of CT containing fluorescent exo into CHO cells coupled with morphological changes in the recipient cells that are characteristic of CT action. Moreover, Me665 cells treated with CT-containing exosomes showed an increase in Adenosine 3',5'-Cyclic Monophosphate (cAMP) level, reaching levels comparable to those seen in cells exposed directly to CT. Our results prompt the idea that CT can exploit an exosome-mediated cell communication pathway to extend its pathophysiological action beyond an initial host cell, into a multitude of cells. This finding could have implications for cholera disease pathogenesis and epidemiology.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Toxina del Cólera/metabolismo , Exosomas/metabolismo , Animales , Células CHO , Línea Celular Tumoral , Membrana Celular/metabolismo , Cólera/etiología , Toxina del Cólera/química , Toxina del Cólera/toxicidad , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Proteína Disulfuro Isomerasas/metabolismo , Subunidades de Proteína/metabolismo , Transporte de Proteínas
5.
Methods Mol Biol ; 1448: 217-35, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27317184

RESUMEN

Over the last 10 years, the constant progression in exosome (Exo)-related studies highlighted the importance of these cell-derived nano-sized vesicles in cell biology and pathophysiology. Functional studies on Exo uptake and intracellular trafficking require accurate quantification to assess sufficient and/or necessary Exo particles quantum able to elicit measurable effects on target cells. We used commercially available BODIPY(®) fatty acid analogues to label a primary melanoma cell line (Me501) that highly and spontaneously secrete nanovesicles. Upon addition to cell culture, BODIPY fatty acids are rapidly incorporated into major phospholipid classes ultimately producing fluorescent Exo as direct result of biogenesis. Our metabolic labeling protocol produced bright fluorescent Exo that can be examined and quantified with conventional non-customized flow cytometry (FC) instruments by exploiting their fluorescent emission rather than light-scattering detection. Furthermore, our methodology permits the measurement of single Exo-associated fluorescence transfer to cells making quantitative the correlation between Exo uptake and activation of cellular processes. Thus the protocol presented here appears as an appropriate tool to who wants to investigate mechanisms of Exo functions in that it allows for direct and rapid characterization and quantification of fluorescent Exo number, intensity, size, and eventually evaluation of their kinetic of uptake/secretion in target cells.


Asunto(s)
Transporte Biológico/genética , Exosomas/genética , Citometría de Flujo , Línea Celular Tumoral , Exosomas/metabolismo , Colorantes Fluorescentes/química , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...