Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36676524

RESUMEN

The impact of bismuth incorporation into the epitaxial layer of a (Ga,Mn)As dilute ferromagnetic semiconductor on its magnetic and electromagnetic properties is studied in very thin layers of quaternary (Ga,Mn)(Bi,As) compound grown on a GaAs substrate under a compressive misfit strain. An addition of a small atomic fraction of 1% Bi atoms, substituting As atoms in the layer, predominantly enhances the spin-orbit coupling strength in its valence band. The presence of bismuth results in a small decrease in the ferromagnetic Curie temperature and a distinct increase in the coercive fields. On the other hand, the Bi incorporation into the layer strongly enhances the magnitude of negative magnetoresistance without affecting the hole concentration in the layer. The negative magnetoresistance is interpreted in terms of the suppression of weak localization in a magnetic field. Application of the weak-localization theory for two-dimensional ferromagnets by Dugaev et al. to the experimental magnetoresistance results indicates that the decrease in spin-orbit scattering length accounts for the enhanced magnetoresistance in (Ga,Mn)(Bi,As).

2.
Materials (Basel) ; 14(16)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34443005

RESUMEN

We have thoroughly investigated the planar Hall effect (PHE) in the epitaxial layers of the quaternary compound (Ga,Mn)(Bi,As). The addition of a small amount of heavy Bi atoms to the prototype dilute ferromagnetic semiconductor (Ga,Mn)As enhances significantly the spin-orbit coupling strength in its valence band, which essentially modifies certain magnetoelectric properties of the material. Our investigations demonstrate that an addition of just 1% Bi atomic fraction, substituting As atoms in the (Ga,Mn)As crystal lattice, causes an increase in the PHE magnitude by a factor of 2.5. Moreover, Bi incorporation into the layers strongly enhances their coercive fields and uniaxial magneto-crystalline anisotropy between the in-plane ⟨110⟩ crystallographic directions in the layers grown under a compressive misfit strain. The displayed two-state behaviour of the PHE resistivity at zero magnetic field, which may be tuned by the control of applied field orientation, could be useful for application in spintronic devices, such as nonvolatile memory elements.

3.
Materials (Basel) ; 13(23)2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33287117

RESUMEN

Structural analysis of epitaxial layers of the (Ga,Mn)(Bi,As) quaternary dilute magnetic semiconductor (DMS), together with investigations of their magnetotransport properties, has been thoroughly performed. The obtained results are compared with those for the reference (Ga,Mn)As layers, grown under similar conditions, with the aim to reveal an impact of Bi incorporation on the properties of this DMS material. Incorporation of Bi into GaAs strongly enhances the spin-orbit coupling strength in this semiconductor, and the same has been expected for the (Ga,Mn)(Bi,As) alloy. In turn, importantly for specific spintronic applications, strong spin-orbit coupling in ferromagnetic systems opens a possibility of directly controlling the direction of magnetization by the electric current. Our investigations, performed with high-resolution X-ray diffractometry and transmission electron microscopy, demonstrate that the (Ga,Mn)(Bi,As) layers of high structural quality and smooth interfaces can be grown by means of the low-temperature molecular-beam epitaxy method, despite a large difference between the sizes of Bi and As atoms. Depending on the applied buffer layer, the DMS layers can be grown under either compressive or tensile misfit strain, which influences their magnetic properties. It is shown that even small 1% Bi content in the layers strongly affects their magnetoelectric properties, such as the coercive field and anisotropic magnetoresistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...