Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros













Intervalo de año de publicación
1.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339064

RESUMEN

Proteinaceous aggregates accumulate in neurodegenerative diseases such as Alzheimer's Disease (AD), inducing cellular defense mechanisms and altering the redox status. S100 pro-inflammatory cytokines, particularly S100B, are activated during AD, but recent findings reveal an unconventional molecular chaperone role for S100B in hindering Aß aggregation and toxicity. This suggests a potential protective role for S100B at the onset of Aß proteotoxicity, occurring in a complex biochemical environment prone to oxidative damage. Herein, we report an investigation in which extracellular oxidative conditions are mimicked to test if the susceptibility of S100B to oxidation influences its protective activities. Resorting to mild oxidation of S100B, we observed methionine oxidation as inferred from mass spectrometry, but no cysteine-mediated crosslinking. Structural analysis showed that the folding, structure, and stability of oxidized S100B were not affected, and nor was its quaternary structure. However, studies on Aß aggregation kinetics indicated that oxidized S100B was more effective in preventing aggregation, potentially linked to the oxidation of Met residues within the S100:Aß binding cleft that favors interactions. Using a cell culture model to analyze the S100B functions in a highly oxidative milieu, as in AD, we observed that Aß toxicity is rescued by the co-administration of oxidized S100B to a greater extent than by S100B. Additionally, results suggest a disrupted positive feedback loop involving S100B which is caused by its oxidation, leading to the downstream regulation of IL-17 and IFN-α2 expression as mediated by S100B.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Estrés Oxidativo , Agregado de Proteínas , Oxidación-Reducción , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo
2.
Front Plant Sci ; 14: 1299025, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38098795

RESUMEN

Sugarcane (Saccharum spp.) is an important crop for sugar and bioethanol production worldwide. To maintain and increase sugarcane yields in marginal areas, the use of nitrogen (N) fertilizers is essential, but N overuse may result in the leaching of reactive N to the natural environment. Despite the importance of N in sugarcane production, little is known about the molecular mechanisms involved in N homeostasis in this crop, particularly regarding ammonium (NH4 +), the sugarcane's preferred source of N. Here, using a sugarcane bacterial artificial chromosome (BAC) library and a series of in silico analyses, we identified an AMMONIUM TRANSPORTER (AMT) from the AMT2 subfamily, sugarcane AMMONIUM TRANSPORTER 3;3 (ScAMT3;3), which is constitutively and highly expressed in young and mature leaves. To characterize its biochemical function, we ectopically expressed ScAMT3;3 in heterologous systems (Saccharomyces cerevisiae and Arabidopsis thaliana). The complementation of triple mep mutant yeast demonstrated that ScAMT3;3 is functional for NH3/H+ cotransport at high availability of NH4 + and under physiological pH conditions. The ectopic expression of ScAMT3;3 in the Arabidopsis quadruple AMT knockout mutant restored the transport capacity of 15N-NH4 + in roots and plant growth under specific N availability conditions, confirming the role of ScAMT3;3 in NH4 + transport in planta. Our results indicate that ScAMT3;3 belongs to the low-affinity transport system (Km 270.9 µM; Vmax 209.3 µmol g-1 root DW h-1). We were able to infer that ScAMT3;3 plays a presumed role in NH4 + source-sink remobilization in the shoots via phloem loading. These findings help to shed light on the functionality of a novel AMT2-type protein and provide bases for future research focusing on the improvement of sugarcane yield and N use efficiency.

3.
Ann Bot ; 132(7): 1233-1248, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37818893

RESUMEN

BACKGROUND AND AIMS: Gigantism is a key component of the domestication syndrome, a suite of traits that differentiates crops from their wild relatives. Allometric gigantism is strongly marked in horticultural crops, causing disproportionate increases in the size of edible parts such as stems, leaves or fruits. Tomato (Solanum lycopersicum) has attracted attention as a model for fruit gigantism, and many genes have been described controlling this trait. However, the genetic basis of a corresponding increase in size of vegetative organs contributing to isometric gigantism has remained relatively unexplored. METHODS: Here, we identified a 0.4-Mb region on chromosome 7 in introgression lines (ILs) from the wild species Solanum pennellii in two different tomato genetic backgrounds (cv. 'M82' and cv. 'Micro-Tom') that controls vegetative and reproductive organ size in tomato. The locus, named ORGAN SIZE (ORG), was fine-mapped using genotype-by-sequencing. A survey of the literature revealed that ORG overlaps with previously mapped quantitative trait loci controlling tomato fruit weight during domestication. KEY RESULTS: Alleles from the wild species led to lower cell number in different organs, which was partially compensated by greater cell expansion in leaves, but not in fruits. The result was a proportional reduction in leaf, flower and fruit size in the ILs harbouring the alleles from the wild species. CONCLUSIONS: Our findings suggest that selection for large fruit during domestication also tends to select for increases in leaf size by influencing cell division. Since leaf size is relevant for both source-sink balance and crop adaptation to different environments, the discovery of ORG could allow fine-tuning of these parameters.


Asunto(s)
Gigantismo , Solanum lycopersicum , Solanum , Solanum lycopersicum/genética , Tamaño de los Órganos/genética , Gigantismo/genética , Sitios de Carácter Cuantitativo/genética , Solanum/genética , Frutas/genética
4.
Front Plant Sci ; 14: 1182461, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37223790

RESUMEN

Drought is a major constraint to sugarcane (Saccharum spp.) production and improving the water use efficiency (WUE) is a critical trait for the sustainability of this bioenergy crop. The molecular mechanism underlying WUE remains underexplored in sugarcane. Here, we investigated the drought-triggered physiological and transcriptional responses of two sugarcane cultivars contrasting for drought tolerance, 'IACSP97-7065' (sensitive) and 'IACSP94-2094' (tolerant). After 21 days without irrigation (DWI), only 'IACSP94-2094' exhibited superior WUE and instantaneous carboxylation efficiency, with the net CO2 assimilation being less impacted when compared with 'IACSP97-7065'. RNA-seq of sugarcane leaves at 21 DWI revealed a total of 1,585 differentially expressed genes (DEGs) for both genotypes, among which 'IACSP94-2094' showed 617 (38.9%) exclusive transcripts (212 up- and 405 down-regulated). Functional enrichment analyses of these unique DEGs revealed several relevant biological processes, such as photosynthesis, transcription factors, signal transduction, solute transport, and redox homeostasis. The better drought-responsiveness of 'IACSP94-2094' suggested signaling cascades that foster transcriptional regulation of genes implicated in the Calvin cycle and transport of water and carbon dioxide, which are expected to support the high WUE and carboxylation efficiency observed for this genotype under water deficit. Moreover, the robust antioxidant system of the drought-tolerant genotype might serve as a molecular shield against the drought-associated overproduction of reactive oxygen species. This study provides relevant data that may be used to develop novel strategies for sugarcane breeding programs and to understand the genetic basis of drought tolerance and WUE improvement of sugarcane.

5.
Front Neurosci ; 17: 1162741, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37025373

RESUMEN

Extracellular aggregation of the amyloid-ß 1-42 (Aß42) peptide is a major hallmark of Alzheimer's disease (AD), with recent data suggesting that Aß intermediate oligomers (AßO) are more cytotoxic than mature amyloid fibrils. Understanding how chaperones harness such amyloid oligomers is critical toward establishing the mechanisms underlying regulation of proteostasis in the diseased brain. This includes S100B, an extracellular signaling Ca2+-binding protein which is increased in AD as a response to neuronal damage and whose holdase-type chaperone activity was recently unveiled. Driven by this evidence, we here investigate how different S100B chaperone multimers influence the formation of oligomers during Aß42 fibrillation. Resorting to kinetic analysis coupled with simulation of AßO influx distributions, we establish that supra-stoichiometric ratios of dimeric S100B-Ca2+ drastically decrease Aß42 oligomerization rate by 95% and AßO levels by 70% due to preferential inhibition of surface-catalyzed secondary nucleation, with a concomitant redirection of aggregation toward elongation. We also determined that sub-molar ratios of tetrameric apo-S100B decrease Aß42 oligomerization influx down to 10%, while precluding both secondary nucleation and, more discreetly, fibril elongation. Coincidently, the mechanistic predictions comply with the independent screening of AßO using a combination of the thioflavin-T and X-34 fluorophores. Altogether, our findings illustrate that different S100B multimers act as complementary suppressors of Aß42 oligomerization and aggregation, further underpinning their potential neuroprotective role in AD.

6.
J Plant Physiol ; 280: 153859, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36423448

RESUMEN

Glandular trichomes produce and exude secondary metabolites, conferring insect resistance in many crop species. Whereas some of its wild relatives are insect-resistant, tomato (Solanum lycopersicum) is not. Identifying the genetic changes that altered trichome development and biochemistry during tomato domestication would contribute to breeding for insect resistance. A mutation in the HAIRS ABSENT (H) gene, which encodes a C2H2 zinc finger protein (ZFP8), leads to reduced trichome density. Several geographic accessions of S. pimpinellifolium, the wild ancestor of domesticated tomato, have glabrous organs that resemble the phenotype caused by h. Here, we investigated allelic diversity for H in tomato and S. pimpinellifolium accessions and their associated trichome phenotypes. We also evaluated how the developmental stage can affect trichome development in glabrous and non-glabrous plants. We found that glabrous accessions of S. pimpinellifolium have different ZFP8 nucleotide sequence changes, associated with altered trichome development and density. We also found that while the glabrous appearance of h mutants is caused by a lower density of long trichomes, the density of type-VI glandular trichomes is increased, particularly in the adult stages of plant development. These insights on the genetic control of trichome development may contribute to breeding for insect resistance in tomatoes and other crops.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , Tricomas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alelos , Variación Genética
7.
Front Plant Sci ; 13: 1039041, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466275

RESUMEN

AMMONIUM TRANSPORTER/METHYLAMMONIUM PERMEASE/RHESUS (AMT) family members transport ammonium across membranes in all life domains. Plant AMTs can be categorized into AMT1 and AMT2 subfamilies. Functional studies of AMTs, particularly AMT1-type, have been conducted using model plants but little is known about the function of AMTs from crops. Sugarcane (Saccharum spp.) is a major bioenergy crop that requires heavy nitrogen fertilization but depends on a low carbon-footprint for competitive sustainability. Here, we identified and functionally characterized sugarcane ScAMT2;1 by complementing ammonium uptake-defective mutants of Saccharomyces cerevisiae and Arabidopsis thaliana. Reporter gene driven by the ScAMT2;1 promoter in A. thaliana revealed preferential expression in the shoot vasculature and root endodermis/pericycle according to nitrogen availability and source. Arabidopsis quadruple mutant plants expressing ScAMT2;1 driven by the CaMV35S promoter or by a sugarcane endogenous promoter produced significantly more biomass than mutant plants when grown in NH4 + and showed more 15N-ammonium uptake by roots and nitrogen translocation to shoots. In A. thaliana, ScAMT2;1 displayed a Km of 90.17 µM and Vmax of 338.99 µmoles h-1 g-1 root DW. Altogether, our results suggest that ScAMT2;1 is a functional high-affinity ammonium transporter that might contribute to ammonium uptake and presumably to root-to-shoot translocation under high NH4 + conditions.

8.
J Mol Biol ; 434(19): 167791, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35970403

RESUMEN

Alzheimer's disease (AD) hallmarks include the aggregation of amyloid-ß (Aß), tau and neuroinflammation promoted by several alarmins. Among these is S100B, a small astrocytic homodimeric protein, upregulated in AD, whose multiple biological activities depend on localization, concentration, and assembly state. S100B was reported to inhibit the aggregation and toxicity of Aß42 and tau similarly to a holdase-type chaperone. This activity is dependent of Ca2+-binding, which triggers the exposure of a regulatory binding cleft at the S100B dimer interface with which amyloidogenic clients dynamically interact. Although the dimer prevails, a significant portion of secreted S100B in the human brain occurs as higher order multimers, whose protective functions remain uncharacterized and which we here investigate. Resorting to ThT-monitored aggregation kinetics, we determined that unlike the dimer, tetrameric S100B inhibits Aß42 aggregation at sub/equimolar ratios, an effect that persists in the absence of Ca2+ binding. Structural analysis revealed that S100B tetramerization spawns a novel extended cleft accommodating an aggregation-prone surface that mediates interactions with monomeric Aß client via hydrophobic interactions, as corroborated by Bis-ANS fluorescence and docking analysis. Correspondingly, at high ionic strength that reduces solvation and favours hydrophobic contacts, the inhibition of Aß42 aggregation by tetrameric S100B is 3-fold increased. Interestingly, this extended Ca2+-independent surface favours Aß42 as substrate, as tau K18 aggregation is not inhibited by the apo tetramer. Overall, results illustrate a mechanism through which oligomerization of the S100B chaperone fine-tunes anti-aggregation activity and client specificity, highlighting the potential functional relevance of S100B multimers in the regulation of AD proteotoxicity.


Asunto(s)
Enfermedad de Alzheimer , Calcio , Chaperonas Moleculares , Agregación Patológica de Proteínas , Subunidad beta de la Proteína de Unión al Calcio S100 , Alarminas , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/química , Animales , Calcio/metabolismo , Humanos , Chaperonas Moleculares/química , Agregación Patológica de Proteínas/metabolismo , Conformación Proteica , Multimerización de Proteína , Subunidad beta de la Proteína de Unión al Calcio S100/química
9.
Mol Genet Genomics ; 297(5): 1403-1421, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35879567

RESUMEN

KEY MESSAGE: Nitrate uptake in sugarcane roots is regulated at the transcriptional and posttranscriptional levels based on the physiological status of the plant and is likely a determinant mechanism for discrimination against nitrate. Sugarcane (Saccharum spp.) is one of the most suitable energy crops for biofuel feedstock, but the reduced recovery of nitrogen (N) fertilizer by sugarcane roots increases the crop carbon footprint. The low nitrogen use efficiency (NUE) of sugarcane has been associated with the significantly low nitrate uptake, which limits the utilization of the large amount of nitrate available in agricultural soils. To understand the regulation of nitrate uptake in sugarcane roots, we identified the major canonical nitrate transporter genes (NRTs-NITRATE TRANSPORTERS) and then determined their expression profiles in roots under contrasting N conditions. Correlation of gene expression with 15N-nitrate uptake revealed that under N deprivation or inorganic N (ammonium or nitrate) supply in N-sufficient roots, the regulation of ScNRT2.1 and ScNRT3.1 expression is the predominant mechanism for the modulation of the activity of the nitrate high-affinity transport system. Conversely, in N-deficient roots, the induction of ScNRT2.1 and ScNRT3.1 transcription is not correlated with the marked repression of nitrate uptake in response to nitrate resupply or high N provision, which suggested the existence of a posttranscriptional regulatory mechanism. Our findings suggested that high-affinity nitrate uptake is regulated at the transcriptional and presumably at the posttranscriptional levels based on the physiological N status and that the regulation of NRT2.1 and NRT3.1 activity is likely a determinant mechanism for the discrimination against nitrate uptake observed in sugarcane roots, which contributes to the low NUE in this crop species.


Asunto(s)
Saccharum , Productos Agrícolas , Regulación de la Expresión Génica de las Plantas , Nitratos , Nitrógeno , Raíces de Plantas
10.
Sci Rep ; 12(1): 9153, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35650424

RESUMEN

Drought is the most detrimental abiotic stress to sugarcane production. Nevertheless, transcriptomic analyses remain scarce for field-grown plants. Here we performed comparative transcriptional profiling of two contrasting sugarcane genotypes, 'IACSP97-7065' (drought-sensitive) and 'IACSP94-2094' (drought-tolerant) grown in a drought-prone environment. Physiological parameters and expression profiles were analyzed at 42 (May) and 117 (August) days after the last rainfall. The first sampling was done under mild drought (soil water potential of -60 kPa), while the second one was under severe drought (soil water potential of -75 kPa). Microarray analysis revealed a total of 622 differentially expressed genes in both sugarcane genotypes under mild and severe drought stress, uncovering about 250 exclusive transcripts to 'IACSP94-2094' involved in oxidoreductase activity, transcriptional regulation, metabolism of amino acids, and translation. Interestingly, the enhanced antioxidant system of 'IACSP94-2094' may protect photosystem II from oxidative damage, which partially ensures stable photochemical activity even after 117 days of water shortage. Moreover, the tolerant genotype shows a more extensive set of responsive transcription factors, promoting the fine-tuning of drought-related molecular pathways. These results help elucidate the intrinsic molecular mechanisms of a drought-tolerant sugarcane genotype to cope with ever-changing environments, including prolonged water deficit, and may be useful for plant breeding programs.


Asunto(s)
Saccharum , Sequías , Grano Comestible/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genotipo , Fitomejoramiento , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Saccharum/genética , Saccharum/metabolismo , Suelo , Agua/metabolismo
11.
Plant Physiol ; 190(1): 113-126, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-35639975

RESUMEN

Heterobaric leaves have bundle sheath extensions (BSEs) that compartmentalize the parenchyma, whereas homobaric leaves do not. The presence of BSEs affects leaf hydraulics and photosynthetic rate. The tomato (Solanum lycopersicum) obscuravenosa (obv) mutant lacks BSEs. Here, we identify the obv gene and the causative mutation, a nonsynonymous amino acid change that disrupts a C2H2 zinc finger motif in a putative transcription factor. This mutation exists as a polymorphism in the natural range of wild tomatoes but has increased in frequency in domesticated tomatoes, suggesting that the latter diversified into heterobaric and homobaric leaf types. The obv mutant displays reduced vein density, leaf hydraulic conductance and photosynthetic assimilation rate. We show that these and other pleiotropic effects on plant development, including changes in leaf insertion angle, leaf margin serration, minor vein density, and fruit shape, are controlled by OBV via changes in auxin signaling. Loss of function of the transcriptional regulator AUXIN RESPONSE FACTOR 4 (ARF4) also results in defective BSE development, revealing an additional component of a genetic module controlling aspects of leaf development important for ecological adaptation and subject to breeding selection.


Asunto(s)
Solanum lycopersicum , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/metabolismo , Fotosíntesis/genética , Fitomejoramiento , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo
12.
J Exp Bot ; 73(11): 3651-3670, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35176760

RESUMEN

Witches' broom disease of cacao is caused by the pathogenic fungus Moniliophthora perniciosa. By using tomato (Solanum lycopersicum) cultivar Micro-Tom (MT) as a model system, we investigated the physiological and metabolic consequences of M. perniciosa infection to determine whether symptoms result from sink establishment during infection. Infection of MT by M. perniciosa caused reductions in root biomass and fruit yield, a decrease in leaf gas exchange, and down-regulation of photosynthesis-related genes. The total leaf area and water potential decreased, while ABA levels, water conductance/conductivity, and ABA-related gene expression increased. Genes related to sugar metabolism and those involved in secondary cell wall deposition were up-regulated upon infection, and the concentrations of sugars, fumarate, and amino acids increased. 14C-glucose was mobilized towards infected MT stems, but not in inoculated stems of the MT line overexpressing CYTOKININ OXIDASE-2 (35S::AtCKX2), suggesting a role for cytokinin in establishing a sugar sink. The up-regulation of genes involved in cell wall deposition and phenylpropanoid metabolism in infected MT, but not in 35S::AtCKX2 plants, suggests establishment of a cytokinin-mediated sink that promotes tissue overgrowth with an increase in lignin. Possibly, M. perniciosa could benefit from the accumulation of secondary cell walls during its saprotrophic phase of infection.


Asunto(s)
Agaricales , Cacao , Solanum lycopersicum , Agaricales/genética , Cacao/genética , Pared Celular , Citocininas , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Enfermedades de las Plantas/microbiología , Azúcares , Agua
13.
Mol Hortic ; 2(1): 12, 2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789497

RESUMEN

Tomato production is influenced by shoot branching, which is controlled by different hormones. Here we produced tomato plants overexpressing the cytokinin-deactivating gene CYTOKININ OXYDASE 2 (CKX2). CKX2-overexpressing (CKX2-OE) plants showed an excessive growth of axillary shoots, the opposite phenotype expected for plants with reduced cytokinin content, as evidenced by LC-MS analysis and ARR5-GUS staining. The TCP transcription factor SlBRC1b was downregulated in the axillary buds of CKX2-OE and its excessive branching was dependent on a functional version of the GRAS-family gene LATERAL SUPPRESSOR (LS). Grafting experiments indicated that increased branching in CKX2-OE plants is unlikely to be mediated by root-derived signals. Crossing CKX2-OE plants with transgenic antisense plants for the strigolactone biosynthesis gene CAROTENOID CLEAVAGE DIOXYGENASE (CCD7-AS) produced an additive phenotype, indicating independent effects of cytokinin and strigolactones on increased branching. On the other hand, CKX2-OE plants showed reduced polar auxin transport and their bud outgrowth was reduced when combined with auxin mutants. Accordingly, CKX2-OE basal buds did not respond to auxin applied in the decapitated apex. Our results suggest that tomato shoot branching depends on a fine-tuning of different hormonal balances and that perturbations in the auxin status could compensate for the reduced cytokinin levels in CKX2-OE plants.

14.
Methods Mol Biol ; 2360: 317-345, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34495524

RESUMEN

RNA interference (RNAi) is a natural mechanism of gene regulation, highly conserved in eukaryotes. Since the elucidation of the gene silencing mechanism, RNAi became an important tool used in insect reverse genetics. The demonstration of effective target-gene silencing by ingestion of double-stranded RNA (dsRNA) produced by transgenic plants indicated the RNAi potential to be used in insect pest management, particularly in agriculture. However, the efficiency of gene silencing by RNAi in insects may vary according to the target taxa, and lepidopteran species have been shown to be quite recalcitrant to RNAi. Developing transgenic plants is a time-consuming and labor-intensive process, so alternative oral delivery systems are required to develop and optimize RNAi settings, such as selecting an efficient target gene, and dsRNA design, length, and stability, among other features. We have developed delivery systems to evaluate dsRNAs to silence genes from two important lepidopteran crop pests of tomato (Solanum lycopersicum) and sugarcane (Saccharum × officinarum): Tuta absoluta (Meyrick), the South American Tomato Pinworm, and Diatraea saccharalis (Fabricius), the Sugarcane Borer, respectively. The protocol described here can be used in similar species and includes (a) direct oral delivery by droplets containing dsRNA; (b) oral delivery by tomato leaflets that absorbed dsRNA solution; (c) delivery by Escherichia coli expressing dsRNA; and (d) delivery by transgenic plants expressing dsRNA.


Asunto(s)
ARN Bicatenario/genética , Agricultura , Animales , Silenciador del Gen , Insectos/genética , Solanum lycopersicum/genética , Mariposas Nocturnas/genética , Plantas Modificadas Genéticamente/genética , Interferencia de ARN
15.
BMC Ecol Evol ; 21(1): 84, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33990179

RESUMEN

BACKGROUND: Plant pathogenesis related-1 (PR-1) proteins belong to the CAP superfamily and have been characterized as markers of induced defense against pathogens. Moniliophthora perniciosa and Moniliophthora roreri are hemibiotrophic fungi that respectively cause the witches' broom disease and frosty pod rot in Theobroma cacao. Interestingly, a large number of plant PR-1-like genes are present in the genomes of both species and many are up-regulated during the biotrophic interaction. In this study, we investigated the evolution of PR-1 proteins from 22 genomes of Moniliophthora isolates and 16 other Agaricales species, performing genomic investigation, phylogenetic reconstruction, positive selection search and gene expression analysis. RESULTS: Phylogenetic analysis revealed conserved PR-1 genes (PR-1a, b, d, j), shared by many Agaricales saprotrophic species, that have diversified in new PR-1 genes putatively related to pathogenicity in Moniliophthora (PR-1f, g, h, i), as well as in recent specialization cases within M. perniciosa biotypes (PR-1c, k, l) and M. roreri (PR-1n). PR-1 families in Moniliophthora with higher evolutionary rates exhibit induced expression in the biotrophic interaction and positive selection clues, supporting the hypothesis that these proteins accumulated adaptive changes in response to host-pathogen arms race. Furthermore, although previous work showed that MpPR-1 can detoxify plant antifungal compounds in yeast, we found that in the presence of eugenol M. perniciosa differentially expresses only MpPR-1e, k, d, of which two are not linked to pathogenicity, suggesting that detoxification might not be the main function of most MpPR-1. CONCLUSIONS: Based on analyses of genomic and expression data, we provided evidence that the evolution of PR-1 in Moniliophthora was adaptive and potentially related to the emergence of the parasitic lifestyle in this genus. Additionally, we also discuss how fungal PR-1 proteins could have adapted from basal conserved functions to possible roles in fungal pathogenesis.


Asunto(s)
Agaricales , Enfermedades de las Plantas , Agaricales/genética , Humanos , Estilo de Vida , Filogenia
16.
Int J Mol Sci ; 22(7)2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807304

RESUMEN

S100B is an astrocytic extracellular Ca2+-binding protein implicated in Alzheimer's disease, whose role as a holdase-type chaperone delaying Aß42 aggregation and toxicity was recently uncovered. Here, we employ computational biology approaches to dissect the structural details and dynamics of the interaction between S100B and Aß42. Driven by previous structural data, we used the Aß25-35 segment, which recapitulates key aspects of S100B activity, as a starting guide for the analysis. We used Haddock to establish a preferred binding mode, which was studied with the full length Aß using long (1 µs) molecular dynamics (MD) simulations to investigate the structural dynamics and obtain representative interaction complexes. From the analysis, Aß-Lys28 emerged as a key candidate for stabilizing interactions with the S100B binding cleft, in particular involving a triad composed of Met79, Thr82 and Glu86. Binding constant calculations concluded that coulombic interactions, presumably implicating the Lys28(Aß)/Glu86(S100B) pair, are very relevant for the holdase-type chaperone activity. To confirm this experimentally, we examined the inhibitory effect of S100B over Aß aggregation at high ionic strength. In agreement with the computational predictions, we observed that electrostatic perturbation of the Aß-S100B interaction decreases anti-aggregation activity. Altogether, these findings unveil features relevant in the definition of selectivity of the S100B chaperone, with implications in Alzheimer's disease.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Biología Computacional/métodos , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Chaperonas Moleculares/metabolismo , Simulación de Dinámica Molecular , Fragmentos de Péptidos/metabolismo , Agregación Patológica de Proteínas
17.
New Phytol ; 231(1): 365-381, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33826751

RESUMEN

Moniliophthora perniciosa causes witches' broom disease of cacao and inflicts symptoms suggestive of hormonal imbalance. We investigated whether infection of the tomato (Solanum lycopersicum) model system Micro-Tom (MT) by the Solanaceae (S)-biotype of Moniliophthora perniciosa, which causes stem swelling and hypertrophic growth of axillary shoots, results from changes in host cytokinin metabolism. Inoculation of an MT-transgenic line that overexpresses the Arabidopsis CYTOKININ OXIDASE-2 gene (35S::AtCKX2) resulted in a reduction in disease incidence and stem diameter. RNA-sequencing analysis of infected MT and 35S::AtCKX2 revealed the activation of cytokinin-responsive marker genes when symptoms were conspicuous. The expression of an Moniliophthora perniciosa tRNA-ISOPENTENYL-TRANSFERASE suggests the production of isopentenyladenine (iP), detected in mycelia grown in vitro. Inoculated MT stems showed higher levels of dihydrozeatin and trans-zeatin but not iP. The application of benzyladenine induced symptoms similar to infection, whereas applying the cytokinin receptor inhibitors LGR-991 and PI55 decreased symptoms. Moniliophthora perniciosa produces iP that might contribute to cytokinin synthesis by the host, which results in vascular and cortex enlargement, axillary shoot outgrowth, reduction in root biomass and an increase in fruit locule number. This strategy may be associated with the manipulation of sink establishment to favour infection by the fungus.


Asunto(s)
Agaricales , Cacao , Solanum lycopersicum , Citocininas , Solanum lycopersicum/genética , Enfermedad por Fitoplasma , Enfermedades de las Plantas
18.
Plant Cell Rep ; 40(3): 507-516, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33389048

RESUMEN

KEY MESSAGE: Transgenic sugarcane expressing V-ATPase subunit E dsRNA affects growth and survival of Sphenophorus levis. Plants being sessile organisms are constantly confronted with several biotic and abiotic stresses. Sugarcane (Saccharum spp) is a major tropical crop widely cultivated for its sugar and other by-products. In Brazil, sugarcane plantations account for significant production losses due to Sphenophorus levis (sugarcane weevil) infestations. With the existing control measures being less effective, there arises a necessity for advanced strategies. Our bioassay injection experiments with V-ATPase E dsRNA in S. levis larvae showed significant mortality and reduction in transcription levels. Furthermore, we down-regulated the V-ATPase E gene of S. levis in transgenic sugarcane using an RNAi approach. The resultant RNAi transgenic lines exhibited reduction in larval growth and survival, without compromising plant performance under controlled environment. Our results illustrate that RNAi-mediated down-regulation of key genes is a promising approach in imparting resistance to sugarcane weevil.


Asunto(s)
Saccharum/genética , ATPasas de Translocación de Protón Vacuolares/genética , Gorgojos/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente , Quimera , Expresión Génica , Control de Insectos , Proteínas de Insectos/genética , Larva , Plantas Modificadas Genéticamente , Interferencia de ARN , ARN Bicatenario/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Saccharum/fisiología , Gorgojos/genética
19.
Pest Manag Sci ; 77(1): 518-526, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32815313

RESUMEN

BACKGROUND: 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), the main benzoxazinoid found in corn, elicits variable larval responses from different pest moths. For the widespread and highly polyphagous Spodoptera frugiperda (Lepidoptera: Noctuidae), the fall-armyworm (FAW), DIMBOA acts as a feeding stimulant and improves larval growth at low concentrations. The FAW present two host plant-related strains, corn and rice strains, related to host preference on corn and other Graminae or rice. Based on both host preference and strain divergence of the FAW on corn, a cereal containing DIMBOA, and rice, lacking this compound, we question if corn and rice strains larvae respond equally toward DIMBOA. We evaluated differential expression in the transcriptome of both midgut and fat body larval tissues of the two strains reared on either DIMBOA-enriched artificial diet or control diet and inferred Bayesian networks. RESULTS: We found differences in performance between corn and rice strain larvae reared on DIMBOA, as well as several differentially regulated contigs annotated as esterases, peptidases, transferases and reductases, all of them known for being related to responses of lepidopterans and other insects to DIMBOA. We also found a UDP-glucuronosyltransferase very similar to others found in many lepidopterans occupying a central hub within a transferase Bayesian network, suggesting that it is essential to an effective response to DIMBOA in FAW. CONCLUSION: Our results suggest that there is an intrinsic cost for FAW rice strain larvae to metabolize corn-originated hydroxamic acids, which could have resulted in the partial host-associated genetic isolation found at FAW field populations.


Asunto(s)
Benzoxazinas , Transcriptoma , Animales , Teorema de Bayes , Spodoptera/genética , Zea mays/genética
20.
Int J Biol Macromol ; 167: 676-686, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33285201

RESUMEN

Phytocystatins are tight-binding cysteine protease inhibitors produced by plants. The first phytocystatin described was isolated from Oryza sativa and, since then, cystatins from several plant species were reported, including from sugarcane. Sugarcane cystatins were unraveled in Sugarcane EST project database, after sequencing of cDNA libraries from various sugarcane tissues at different developmental stages and six sugarcane cystatins were cloned, expressed and characterized (CaneCPI-1 to CaneCPI-6). These recombinant proteins were produced in different expression systems and inhibited several cysteine proteases, including human cathepsins B and L, which can be involved in pathologies, such as cancer. In this review, we summarize a comprehensive history of all sugarcane cystatins, presenting an updated phylogenetic analysis; chromosomal localization, and genomic organization. We also present protein docking of CaneCPI-5 in the active site of human cathepsin B, insights about canecystatins structures; recombinant expression in different systems, comparison of their inhibitory activities against human cysteine cathepsins B, K, L, S, V, falcipains from Plasmodium falciparum and a cathepsin L-like from the sugarcane weevil Sphenophorus levis; and enlighten their potential and current applications in agriculture and health.


Asunto(s)
Biotecnología , Cistatinas/química , Cistatinas/farmacología , Saccharum/química , Secuencia de Aminoácidos , Biotecnología/métodos , Cistatinas/genética , Proteasas de Cisteína/metabolismo , Inhibidores de Cisteína Proteinasa/química , Inhibidores de Cisteína Proteinasa/farmacología , Descubrimiento de Drogas , Regulación de la Expresión Génica de las Plantas , Humanos , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/farmacología , Proteínas Recombinantes , Saccharum/clasificación , Saccharum/genética , Saccharum/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA