Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros













Intervalo de año de publicación
1.
Med Mycol ; 62(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38533658

RESUMEN

Chromoblastomycosis (CBM) and pheohyphomycosis (PHM) are the most common implantation mycoses caused by dematiaceous fungi. In the past, flucytosine (5-FC) has been used to treat CBM, but development of resistance is common. Carmofur belongs to the same class as 5-FC and has in vitro inhibitory activity against the main agents of CBM and PHM. The aim of this study was to compare the action of these two pyrimidine analog drugs against CBM and PHM agents. The minimum inhibitory concentration (MIC) and the selectivity index based on cytotoxicity tests of these two drugs against some agents of these mycoses were determined, with carmofur presenting a higher selectivity index than 5-FC. Carmofur demonstrated here synergistic interactions with itraconazole and amphotericin B against Exophiala heteromorpha, Fonsecaea pedrosoi, Fonsecaea monophora, and Fonsecaea nubica strains. Additionally, carmofur plus itraconazole demonstrated here synergism against a Phialophora verrucosa strain. To evaluate the development of carmofur resistance, passages in culture medium containing subinhibitory concentrations of this pyrimidine analog were carried out, followed by in vitro susceptibility tests. Exophiala dermatitidis quickly developed resistance, whereas F. pedrosoi took seven passages in carmofur-supplemented medium to develop resistance. Moreover, resistance was permanent in E. dermatitidis but transient in F. pedrosoi. Hence, carmofur has exhibited certain advantages, albeit accompanied by limitations such as the development of resistance, which was expected as with 5-FC. This underscores its therapeutic potential in combination with other drugs, emphasizing the need for a meticulous evaluation of its application in the fight against dematiaceous fungi.


Asunto(s)
Cromoblastomicosis , Micosis , Humanos , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Flucitosina/farmacología , Itraconazol/farmacología , Itraconazol/uso terapéutico , Hongos , Cromoblastomicosis/microbiología , Cromoblastomicosis/veterinaria , Micosis/tratamiento farmacológico , Micosis/veterinaria , Pruebas de Sensibilidad Microbiana/veterinaria
2.
Braz J Microbiol ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466550

RESUMEN

The drugs available to treat sporotrichosis, an important yet neglected fungal infection, are limited. Some Sporothrix spp. strains present reduced susceptibility to these antifungals. Furthermore, some patients may not be indicated to use these drugs, while others may not respond to the therapy. The anthelmintic drug niclosamide is fungicidal against the Sporothrix brasiliensis type strain. This study aimed to evaluate whether niclosamide also has antifungal activity against Sporothrix globosa, Sporothrix schenckii and other S. brasiliensis strains with distinct genotypes and antifungal susceptibility status. Minimal inhibitory and fungicidal concentrations (MIC and MFC, respectively) were determined using the microdilution method according to the CLSI protocol. The checkerboard method was employed to evaluate niclosamide synergism with drugs used in sporotrichosis treatment. Metabolic activity of the strains under niclosamide treatment was evaluated using the resazurin dye. Niclosamide was active against all S. brasiliensis strains (n = 17), but it was ineffective (MIC > 20 µM) for some strains (n = 4) of other pathogenic Sporothrix species. Niclosamide MIC values for Sporothrix spp. were similar for mycelial and yeast-like forms of the strains (P = 0.6604). Niclosamide was fungicidal (MFC/MIC ratio ≤ 2) for most strains studied (89%). Niclosamide activity against S. brasiliensis is independent of the fungal genotype or non-wild-type phenotypes for amphotericin B, itraconazole, or terbinafine. These antifungal drugs presented indifferent interactions with niclosamide. Niclosamide has demonstrated potential for repurposing as a treatment for sporotrichosis, particularly in S. brasiliensis cases, instigating in vivo studies to validate the in vitro findings.

3.
J Fungi (Basel) ; 9(7)2023 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-37504741

RESUMEN

Chromoblastomycosis (CBM) is a neglected human implantation mycosis caused by several dematiaceous fungal species. Currently available therapy is usually associated with physical methods, especially surgery, and with high refractoriness. Therefore, drug discovery for CBM is essential. Drug repositioning is a strategy used to facilitate the discovery of new treatments for several diseases. The aim of this study was to discover substances with antifungal activity against CBM agents from a collection of drugs previously approved for use in human diseases. A screening was performed with the NIH Clinical Collection against Fonsecaea pedrosoi. Ten substances, with clinical applicability in CBM, inhibited fungal growth by at least 60%. The minimum inhibitory concentration (MIC) of these substances was determined against other CBM agents, and the benzimidazoles albendazole, mebendazole and thiabendazole presented the lowest MIC values. The selectivity index, based on MIC and cytotoxicity of these substances, revealed albendazole to be more selective. To investigate a possible synergism of this benzimidazole with itraconazole and terbinafine, the chequerboard method was used. All interactions were classified as indifferent. Our current results suggest that benzimidazoles have repositioning potential against CBM agents. Albendazole seems to be the most promising, since it presented the highest selectivity against all dematiaceous fungi tested.

4.
J Fungi (Basel) ; 9(4)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37108941

RESUMEN

This study aimed to investigate the effects of cyclosporine on the morphology, cell wall structure, and secretion characteristics of Cryptococcus neoformans. The minimum inhibitory concentration (MIC) of cyclosporine was found to be 2 µM (2.4 µg/mL) for the H99 strain. Yeast cells treated with cyclosporine at half the MIC showed altered morphology, including irregular shapes and elongated projections, without an effect on cell metabolism. Cyclosporine treatment resulted in an 18-fold increase in chitin and an 8-fold increase in lipid bodies, demonstrating changes in the fungal cell wall structure. Cyclosporine also reduced cell body and polysaccharide capsule diameters, with a significant reduction in urease secretion in C. neoformans cultures. Additionally, the study showed that cyclosporine increased the viscosity of secreted polysaccharides and reduced the electronegativity and conductance of cells. The findings suggest that cyclosporine has significant effects on C. neoformans morphology, cell wall structure, and secretion, which could have implications for the development of new antifungal agents.

5.
Mycoses ; 66(5): 430-440, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36564594

RESUMEN

BACKGROUND: The Trichosporonaceae family comprises a large number of basidiomycetes widely distributed in nature. Some of its members, especially Trichosporon asahii, have the ability to cause human infections. This ability is related to a series of virulence factors, which include lytic enzymes production, biofilm formation, resistance to oxidising agents, melanin and glucuronoxylomannan in the cell wall, metabolic plasticity and phenotypic switching. The last two are poorly addressed within human pathogenic Trichosporonaceae. OBJECTIVE: These factors were herein studied to contribute with the knowledge of these emerging pathogens and to uncover mechanisms that would explain the higher frequency of T. asahii in human infections. METHODS: We included 79 clinical isolates phenotypically identified as Trichosporon spp. and performed their molecular identification. Lactate and N-acetyl glucosamine were the carbon sources of metabolic plasticity studies. Morphologically altered colonies after subcultures and incubation at 37°C indicated phenotypic switching. RESULTS AND CONCLUSION: The predominant species was T. asahii (n = 65), followed by Trichosporon inkin (n = 4), Apiotrichum montevideense (n = 3), Trichosporon japonicum (n = 2), Trichosporon faecale (n = 2), Cutaneotrichosporon debeurmannianum (n = 1), Trichosporon ovoides (n = 1) and Cutaneotrichosporon arboriforme (n = 1). T. asahii isolates had statistically higher growth on lactate and N-acetylglucosamine and on glucose during the first 72 h of culture. T. asahii, T. inkin and T. japonicum isolates were able to perform phenotypic switching. These results expand the virulence knowledge of Trichosporonaceae members and point for a role for metabolic plasticity and phenotypic switching on the trichosporonosis pathogenesis.


Asunto(s)
Basidiomycota , Trichosporon , Tricosporonosis , Humanos , Antifúngicos , Trichosporon/genética , Virulencia , Adaptación Fisiológica , Lactatos
6.
Mem Inst Oswaldo Cruz ; 117: e220089, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36102413

RESUMEN

BACKGROUND: Black fungi of the Herpotrichiellaceae family are agents of chromoblastomycosis and phaeohyphomycosis. There are few therapeutic options for these infections and it is common to associate antifungal drugs in their treatment. OBJECTIVES: To investigate the Medicines for Malaria Venture (MMV) Pathogen Box® for possible compounds presenting synergism with antifungal drugs used to treat black fungal infections. METHODS: An initial screening of the Pathogen Box® compounds was performed in combination with itraconazole or terbinafine at sub-inhibitory concentrations against Fonsecaea pedrosoi. Hits were further tested against eight Herpotrichiellaceae using the checkerboard method. FINDINGS: No synergism was observed with terbinafine. MMV687273 (SQ109) and MMV688415 showed synergism with itraconazole against F. pedrosoi. Synergism of these compounds was confirmed with some black fungi by the checkerboard method. SQ109 and itraconazole presented synergism for Exophiala dermatitidis, F. pedrosoi, F. monophora and F. nubica, with fungicidal activity for F. pedrosoi and F. monophora. MMV688415 presented synergism with itraconazole only for F. pedrosoi, with fungicidal activity. The synergic compounds had high selectivity index values when combined with itraconazole. MAIN CONCLUSIONS: These compounds in combination, particularly SQ109, are promising candidates to treat Fonsecaea spp. and E. dermatitidis infections, which account for most cases of chromoblastomycosis and phaeohyphomycosis.


Asunto(s)
Ascomicetos , Cromoblastomicosis , Malaria , Feohifomicosis , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Cromoblastomicosis/diagnóstico , Cromoblastomicosis/tratamiento farmacológico , Cromoblastomicosis/microbiología , Itraconazol/farmacología , Malaria/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Feohifomicosis/tratamiento farmacológico , Terbinafina/uso terapéutico
7.
Front Microbiol ; 13: 876611, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35547117

RESUMEN

Melanin is one of the most studied virulence factors in pathogenic fungi. This pigment protects them from a series of both environmental and host stressors. Among basidiomycetes, Cryptococcus neoformans and Trichosporon asahii are known to produce melanin in the presence of phenolic precursors. Other species from the Trichosporonaceae family also produce this pigment, but the extent to this production among the clinically relevant species is unknown. For this reason, the aim of this study was to verify the production of melanin by different Trichosporonaceae species of clinical interest and to compare their pigments with the ones from C. neoformans and T. asahii, which are more prevalent in human infections. Melanin was produced in a minimal medium supplemented with 1 mM L-dihydroxyphenylalanine (L-DOPA). Pigment was evaluated using scanning electron microscopy, Zeta potential measurements, and energy-dispersive X-ray spectroscopy. It was found that, besides C. neoformans and T. asahii, Trichosporon japonicum, Apiotrichum montevideense, Trichosporon inkin, Trichosporon faecale, Cutaneotrichosporon debeurmannianum, and Cutaneotrichosporon arboriformis also produce melanin-like particles in the presence of L-DOPA. Melanin particles have negative charge and are smaller than original cells. Variations in color, fluorescence, and chemical composition was noticed between the studied strains. All melanins presented carbon, oxygen, sodium, and potassium in their composition. Melanins from the most pathogenic species also presented iron, zinc, and copper, which are important during parasitism. Biophysical properties of these melanins can confer to the Trichosporonaceae adaptive advantages to both parasitic and environmental conditions of fungal growth.

8.
J Fungi (Basel) ; 8(5)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35628725

RESUMEN

Although rare, disseminated sporotrichosis is increasing in several countries. Despite its limiting toxic potential, amphotericin B is the only intravenous antifungal available to treat severe sporotrichosis. We aimed to describe the effectiveness and safety of amphotericin B treatment for severe sporotrichosis. Clinical records of patients with disseminated sporotrichosis at a reference center were reviewed. This study included 73 patients. Most (53.4%) were men and non-white. HIV coinfection was the main comorbidity (52.1%). Most reported contact with cats (76.7%). Sporothrix brasiliensis was the causative species. Affected sites were skin (98.6%), osteoarticular system (64.4%), upper airway (42.5%), central nervous system (20.5%), eyes (12.3%), and lungs (8.2%). Median doses of amphotericin B used were 750 mg and 4500 mg for deoxycholate and lipid complex formulations, respectively. Amphotericin B discontinuation occurred in 20.5% due to adverse events, mainly azotemia. The outcomes included cure (52.1%), death due to sporotrichosis (21.9%), death due to other causes (9.6%), and loss to follow-up (8.2%). Survival analysis showed an association between cure and the absence of bone, upper airway, and central nervous system involvement. Amphotericin B is the first-choice treatment for disseminated sporotrichosis; however, the severity of systemic dissemination might predict its response. Favorable clinical results depend on prompt diagnosis, investigation of fungal dissemination, and early therapy initiation.

9.
Mem. Inst. Oswaldo Cruz ; 117: e220089, 2022. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1406000

RESUMEN

BACKGROUND Black fungi of the Herpotrichiellaceae family are agents of chromoblastomycosis and phaeohyphomycosis. There are few therapeutic options for these infections and it is common to associate antifungal drugs in their treatment. OBJECTIVES To investigate the Medicines for Malaria Venture (MMV) Pathogen Box® for possible compounds presenting synergism with antifungal drugs used to treat black fungal infections. METHODS An initial screening of the Pathogen Box® compounds was performed in combination with itraconazole or terbinafine at sub-inhibitory concentrations against Fonsecaea pedrosoi. Hits were further tested against eight Herpotrichiellaceae using the checkerboard method. FINDINGS No synergism was observed with terbinafine. MMV687273 (SQ109) and MMV688415 showed synergism with itraconazole against F. pedrosoi. Synergism of these compounds was confirmed with some black fungi by the checkerboard method. SQ109 and itraconazole presented synergism for Exophiala dermatitidis, F. pedrosoi, F. monophora and F. nubica, with fungicidal activity for F. pedrosoi and F. monophora. MMV688415 presented synergism with itraconazole only for F. pedrosoi, with fungicidal activity. The synergic compounds had high selectivity index values when combined with itraconazole. MAIN CONCLUSIONS These compounds in combination, particularly SQ109, are promising candidates to treat Fonsecaea spp. and E. dermatitidis infections, which account for most cases of chromoblastomycosis and phaeohyphomycosis.

10.
Mycopathologia ; 186(3): 377-385, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33956292

RESUMEN

Glucuronoxylomannan (GXM) participates in several immunoregulatory mechanisms, which makes it an important Cryptococcus virulence factor that is essential for the disease. Trichosporon asahii and Trichosporon mucoides share with Cryptococcus species the ability to produce GXM. To check whether other opportunistic species in the Trichosporonaceae family produce GXM-like polysaccharides, extracts from 28 strains were produced from solid cultures and their carbohydrate content evaluated by the sulfuric acid / phenol method. Moreover, extracts were assessed for cryptococcal GXM cross-reactivity through latex agglutination and lateral flow assay methods. Cryptococcus neoformans and Saccharomyces cerevisiae were used as positive and negative controls, respectively. In addition to T. asahii, the species Trichosporon inkin, Apiotrichum montevideense, Trichosporon japonicum, Trichosporon faecale, Trichosporon ovoides, Cutaneotrichosporon debeurmannianum, and Cutaneotrichosporon arboriformis are also producers of a polysaccharide immunologically similar to the GXM produced by human pathogenic Cryptococcus species. The carbohydrate concentration of the extracts presented a positive correlation with the GXM contents determined by titration of both methodologies. These results add several species to the list of fungal pathogens that produce glycans of the GXM type and bring information about the origin of potential false-positive results on immunological tests for diagnosis of cryptococcosis based on GXM detection.


Asunto(s)
Polisacáridos/aislamiento & purificación , Basidiomycota , Cryptococcus neoformans , Humanos
11.
Med Mycol ; 59(3): 235-243, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32497174

RESUMEN

Bloodstream infections (BSI) caused by Candida species are the fourth cause of healthcare associated infections worldwide. Non-albicans Candida species emerged in the last decades as agents of serious diseases. In this study, clinical and microbiological aspects of six patients with BSI due to the Meyerozyma (Candida) guilliermondii species complex from an oncology reference center in Brazil, were evaluated. To describe demographic and clinical characteristics, medical records of the patients were reviewed. Molecular identification of the isolates was performed by ITS1-5.8S-ITS2 region sequencing. Antifungal susceptibility was evaluated by the EUCAST method and the minimal inhibitory concentrations (MIC) assessed according to the epidemiological cutoff values. Virulence associated phenotypes of the isolates were also studied. Ten isolates from the six patients were evaluated. Five of them were identified as Meyerozyma guilliermondii and the others as Meyerozyma caribbica. One patient was infected with two M. caribbica isolates with different genetic backgrounds. High MICs were observed for fluconazole and echinocandins. Non-wild type isolates to voriconazole appeared in one patient previously treated with this azole. Additionally, two patients survived, despite infected with non-wild type strains for fluconazole and treated with this drug. All isolates produced hemolysin, which was not associated with a poor prognosis, and none produced phospholipases. Aspartic proteases, phytase, and esterase were detected in a few isolates. This study shows the reduced antifungal susceptibility and a variable production of virulence-related enzymes by Meyerozyma spp. In addition, it highlights the poor prognosis of neutropenic patients with BSI caused by this emerging species complex. LAY ABSTRACT: Our manuscript describes demographic, clinical and microbiological characteristics of patients with bloodstream infection by the Meyerozyma guilliermondii species complex at a reference center in oncology in Brazil.


Asunto(s)
Candidiasis/sangre , Saccharomycetales/genética , Saccharomycetales/patogenicidad , Sepsis/microbiología , Adulto , Antifúngicos/farmacología , Brasil , Candidiasis/microbiología , Estudios de Casos y Controles , Farmacorresistencia Fúngica , Femenino , Humanos , Masculino , Persona de Mediana Edad , Servicio de Oncología en Hospital/estadística & datos numéricos , Estudios Retrospectivos , Saccharomycetales/efectos de los fármacos , Saccharomycetales/aislamiento & purificación , Adulto Joven
12.
Braz J Microbiol ; 52(1): 5-18, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32440844

RESUMEN

Sporotrichosis in immunocompromised patients has a high morbidity and may cause deaths. Particularly, patients with acquired immunodeficiency syndrome (AIDS) with low T CD4 counts develop a chronic disease, with severe and widespread forms. Recently, the ability of Sporothrix brasiliensis, the main agent of zoonotic sporotrichosis, to increase its virulence in a diabetic patient without HIV infection was described. Since it was a unique finding, it is not known how often this occurs in patients with chronic and refractory sporotrichosis. The aim of this study is to compare sequential Sporothrix isolates obtained from patients with sporotrichosis and AIDS in order to detect changes in virulence-related phenotypes and acquisition of antifungal resistance during the evolution of the disease. Fungal growth in different substrates, antifungal susceptibility, thermotolerance, resistance to oxidative stress, and production of hydrolytic enzymes were evaluated. Correlations were assessed between clinical and phenotypic variables. Sixteen isolates, all identified as S. brasiliensis, obtained from five patients were studied. They grew well on glucose and N-acetyl-D-glucosamine, but poorly on lactate. Except from isolates collected from two patients, which were non-wild type for terbinafine, they were considered wild type for the antifungal drugs tested. Thermotolerance of the isolates was moderate to high. Except for phytase and phospholipase, isolates were able to produce virulence-related enzymes on different levels. Changes in all studied phenotypes were observed during the course of the disease in some patients. The results show that the HIV-driven immunosuppression is more relevant than fungal phenotypes on the unfavorable outcomes of disseminated sporotrichosis.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida/complicaciones , Sporothrix/patogenicidad , Esporotricosis/microbiología , Acetilglucosamina/metabolismo , Adulto , Animales , Antifúngicos/farmacología , Evolución Biológica , Farmacorresistencia Fúngica , Femenino , Glucosa/metabolismo , Humanos , Ácido Láctico/metabolismo , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Fenotipo , Sporothrix/efectos de los fármacos , Sporothrix/genética , Sporothrix/metabolismo , Esporotricosis/etiología , Virulencia/efectos de los fármacos , Adulto Joven
13.
Mycopathologia ; 185(4): 665-673, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32643011

RESUMEN

Microsporum canis is a zoophilic dermatophyte and the most common fungus isolated from dogs and cats worldwide. To invade skin, this pathogen uses different enzymes, which may be associated with virulence, that contribute to the fungal pathogenicity. The aim of this study is to compare the expression of enzymes that may be associated with virulence, and thermotolerance of M. canis strains isolated from dogs, cats, and humans. The in vitro expression of the enzymes keratinase, catalase, urease, hemolysin, and aspartic protease was evaluated in 52 M. canis strains recently isolated from 14 human patients, 12 dogs, 15 symptomatic, and 11 asymptomatic cats. In addition, thermotolerance was assessed by comparative analysis of fungal growth at 25 °C and 35 °C. Keratinase activity was low in 34 and moderate in 18 strains. Aspartic-protease activity was low in 7, moderate in 33, and high in 12 strains. Hemolysin activity was low in 44 and moderate in 8 strains. All strains were classified as low producers of catalase. All but three strains produced urease in vitro, with a broad range of activity. The strains presented in vitro growth at the two studied temperatures were classified as presenting low (36.5%), medium (44.3%), or high (19.2%) thermotolerance. There was no statistically significant difference in the new putative virulence-associated factors studied among the different hosts, which suggests that they may have a similar role on human, cat, and dog infection. Also, no difference was observed between strains isolated from symptomatic and asymptomatic cats. This suggests that these factors have a limited impact on the fate of feline dermatophytosis caused by M. canis.


Asunto(s)
Enfermedades de los Gatos , Dermatomicosis/veterinaria , Enfermedades de los Perros , Microsporum/patogenicidad , Factores de Virulencia/análisis , Animales , Enfermedades de los Gatos/microbiología , Gatos , Enfermedades de los Perros/microbiología , Perros , Humanos , Virulencia
14.
PLoS One ; 15(5): e0229630, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32401759

RESUMEN

Chromoblastomycosis (CBM) is a chronic subcutaneous mycosis caused by traumatic implantation of many species of black fungi. Due to the refractoriness of some cases and common recurrence of CBM, a more effective and less time-consuming treatment is mandatory. The aim of this study was to identify compounds with in vitro antifungal activity in the Pathogen Box® compound collection against different CBM agents. Synergism of these compounds with drugs currently used to treat CBM was also assessed. An initial screening of the drugs present in this collection at 1 µM was performed with a Fonsecaea pedrosoi clinical strain according to the EUCAST protocol. The compounds with activity against this fungus were also tested against other seven etiologic agents of CBM (Cladophialophora carrionii, Phialophora verrucosa, Exophiala jeanselmei, Exophiala dermatitidis, Fonsecaea monophora, Fonsecaea nubica, and Rhinocladiella similis) at concentrations ranging from 0.039 to 10 µM. The analysis of potential synergism of these compounds with itraconazole and terbinafine was performed by the checkerboard method. Eight compounds inhibited more than 60% of the F. pedrosoi growth: difenoconazole, bitertanol, iodoquinol, azoxystrobin, MMV688179, MMV021013, trifloxystrobin, and auranofin. Iodoquinol produced the lowest MIC values (1.25-2.5 µM) and MMV688179 showed MICs that were higher than all compounds tested (5 - >10 µM). When auranofin and itraconazole were tested in combination, a synergistic interaction (FICI = 0.37) was observed against the C. carrionii isolate. Toxicity analysis revealed that MMV021013 showed high selectivity indices (SI ≥ 10) against the fungi tested. In summary, auranofin, iodoquinol, and MMV021013 were identified as promising compounds to be tested in CBM models of infection.


Asunto(s)
Antifúngicos/farmacología , Cromoblastomicosis/tratamiento farmacológico , Sinergismo Farmacológico , Hongos/patogenicidad , Acetatos/farmacología , Ascomicetos/efectos de los fármacos , Ascomicetos/patogenicidad , Auranofina/farmacología , Compuestos de Bifenilo/farmacología , Cromoblastomicosis/microbiología , Cromoblastomicosis/patología , Dioxolanos/farmacología , Exophiala/efectos de los fármacos , Exophiala/patogenicidad , Hongos/efectos de los fármacos , Humanos , Iminas/farmacología , Yodoquinol/farmacología , Pirimidinas/farmacología , Estrobilurinas/farmacología , Triazoles/farmacología
15.
Braz J Microbiol ; 51(1): 95-98, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31776863

RESUMEN

Infections caused by Rhodotorula spp. are increasing worldwide. This study identified, through the light of the new taxonomic advances on the subphylum Pucciniomycotina, 16 isolates from blood cultures and compared their antifungal susceptibility on microdilution and gradient diffusion methods. Internal transcriber spacer sequencing identified Rhodotorula mucilaginosa (n = 12), Rhodotorula toruloides (n = 2), Rhodotorula dairenensis (n = 1), and Cystobasidium minutum (n = 1). Amphotericin B was the most effective drug. A good essential agreement was observed on MIC values of amphotericin B and voriconazole determined by the two methods. Therefore, the gradient method is useful for susceptibility tests of R. mucilaginosa against these drugs.


Asunto(s)
Antifúngicos/farmacología , Pruebas de Sensibilidad Microbiana/métodos , Micosis/microbiología , Rhodotorula/clasificación , Rhodotorula/efectos de los fármacos , Anfotericina B/farmacología , Cultivo de Sangre , Brasil , ADN Intergénico/genética , Difusión , Humanos , Micosis/sangre , Rhodotorula/genética , Voriconazol/farmacología
16.
Med Mycol Case Rep ; 23: 16-19, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30479942

RESUMEN

Sporotrichosis is a human and animal disease caused by dimorphic pathogenic species of the genus Sporothrix. We report a dramatic presentation of Sporothrix brasiliensis infection, with destruction of the nasal septum, soft palate, and uvula of an HIV-infected woman. She was successfully treated with amphotericin B deoxycholate followed by itraconazole. Sporotrichosis remains a neglected opportunistic infection in patients with AIDS and awareness of this potentially fatal infection is of utmost importance.

17.
PLoS Negl Trop Dis ; 12(7): e0006675, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30048450

RESUMEN

BACKGROUND: Chromoblastomycosis (CBM) is a difficult-to-treat chronic subcutaneous mycosis. In Brazil, the main agent of this disease is Fonsecaea pedrosoi, which is phenotypically very similar to other Fonsecaea species, differing only genetically. The correct species identification is relevant since different species may differ in their epidemiologic aspects, clinical presentation, and treatment response. METHODOLOGY/PRINCIPAL FINDINGS: Partial sequencing of the internal transcribed spacer (ITS) was used to identify twenty clinical isolates of Fonsecaea spp. Their in vitro antifungal susceptibility was determined using the broth microdilution method, according to the M38-A2 protocol. Amphotericin B (AMB), flucytosine (5FC), terbinafine (TRB), fluconazole (FLC), itraconazole (ITC), ketoconazole (KTC), posaconazole (POS), voriconazole (VRC), ravuconazole (RVC), caspofungin (CAS), and micafungin (MFG) were tested. The association between ITC/TRB, AMB/5FC, and ITC/CAS was studied by the checkerboard method to check synergism. The available patients' data were correlated with the obtained laboratory results. Fonsecaea monophora (n = 10), F. pedrosoi (n = 5), and F. nubica (n = 5) were identified as CBM' agents in the study. TRB and VRC were the drugs with the best in vitro activity with minimal inhibitory concentrations (MIC) lower than 0.25 mg/L. On the other hand, FLC, 5FC, AMB, and MFG showed high MICs. The AMB/5FC combination was synergistic for three F. monophora strains while the others were indifferent. Patients had moderate or severe CBM, and ITC therapy was not sufficient for complete cure in most of the cases, requiring adjuvant surgical approaches. CONCLUSIONS/SIGNIFICANCE: F. monophora, the second most frequent Fonsecaea species in South America, predominated in patients raised and born in Rio de Janeiro, Brazil, without cerebral involvement in these cases. TRB, VRC, and the AMB/5FC combination should be further investigated as a treatment option for CBM.


Asunto(s)
Antifúngicos/farmacología , Ascomicetos/efectos de los fármacos , Ascomicetos/genética , Cromoblastomicosis/microbiología , Adulto , Anciano , Anciano de 80 o más Años , Anfotericina B/farmacología , Ascomicetos/clasificación , Ascomicetos/aislamiento & purificación , Brasil , Caspofungina , Cromoblastomicosis/tratamiento farmacológico , ADN de Hongos/genética , ADN Intergénico/genética , Equinocandinas/farmacología , Femenino , Humanos , Itraconazol/farmacología , Lipopéptidos/farmacología , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Voriconazol/farmacología
18.
Mem Inst Oswaldo Cruz ; 113(1): 68-70, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29211110

RESUMEN

There is a paucity of studies on the cell biology of Sporothrix luriei, the less common of the pathogenic Sporothrix species worldwide. The production of DHN-melanin, eumelanin, and pyomelanin were evaluated on the mycelial and yeast forms of the S. luriei ATCC 18616 strain. The mycelial form of this species produced only pyomelanin, which protected the fungus against environmental stressors such as ultraviolet light, heat, and cold. The yeast form was unable to produce any of the tested melanin types. The lack of melanin in the parasitic form of S. luriei may be an explanation for its low frequency in human infections.


Asunto(s)
Melaninas/biosíntesis , Sporothrix/metabolismo
19.
Mediators Inflamm ; 2017: 8952878, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28814823

RESUMEN

Candida glabrata is a facultative intracellular opportunistic fungal pathogen in human infections. Several virulence-associated attributes are involved in its pathogenesis, host-pathogen interactions, modulation of host immune defenses, and regulation of antifungal drug resistance. This study evaluated the in vitro antifungal susceptibility profile to five antifungal agents, the production of seven hydrolytic enzymes related to virulence, and the relationship between these phenotypes in 91 clinical strains of C. glabrata. All C. glabrata strains were susceptible to flucytosine. However, some of these strains showed resistance to amphotericin B (9.9%), fluconazole (15.4%), itraconazole (5.5%), or micafungin (15.4%). Overall, C. glabrata strains were good producers of catalase, aspartic protease, esterase, phytase, and hemolysin. However, caseinase and phospholipase in vitro activities were not detected. Statistically significant correlations were identified between micafungin minimum inhibitory concentration (MIC) and esterase production, between fluconazole and micafungin MIC and hemolytic activity, and between amphotericin B MIC and phytase production. These results contribute to clarify some of the C. glabrata mechanisms of pathogenicity. Moreover, the association between some virulence attributes and the regulation of antifungal resistance encourage the development of new therapeutic strategies involving virulence mechanisms as potential targets for effective antifungal drug development for the treatment of C. glabrata infections.


Asunto(s)
Antifúngicos/farmacología , Candida glabrata/enzimología , Anfotericina B/farmacología , Candida glabrata/efectos de los fármacos , Farmacorresistencia Fúngica , Equinocandinas/farmacología , Fluconazol/farmacología , Hidrólisis , Itraconazol/farmacología , Lipopéptidos/farmacología , Micafungina , Pruebas de Sensibilidad Microbiana , Virulencia
20.
Mycopathologia ; 182(11-12): 1053-1060, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28736794

RESUMEN

Tinea capitis caused by Microsporum audouinii is reported herein from two Brazilian schoolchildren, which are brothers. Arthroconidia were evidenced on direct examination of scalp hair, and a fungus of the genus Microsporum was isolated from cultures of each patient. The isolated fungi were classified as M. audouinii by visualization of species-specific structures, including: pectinate hyphae, chlamydospores, and fusiform macroconidia, sterile growth with characteristic brown pigment in rice grains, and through DNA sequencing of the internal transcriber spacer region. Patients were refractory to ketoconazole, but the two cases had a satisfactory response to oral terbinafine. All M. audouinii infections described in this century were reviewed, and to our knowledge, this is the first literature description of this species from South America. Misidentification of M. audouinii with Microsporum canis can occur in this area, leading to erroneous data about the occurrence of this species.


Asunto(s)
Antifúngicos/uso terapéutico , Microsporum/aislamiento & purificación , Naftalenos/uso terapéutico , Tiña del Cuero Cabelludo/tratamiento farmacológico , Anciano , Brasil , Niño , Preescolar , ADN Intergénico/genética , Farmacorresistencia Fúngica , Femenino , Cabello/microbiología , Humanos , Cetoconazol/uso terapéutico , Masculino , Pruebas de Sensibilidad Microbiana , Microsporum/efectos de los fármacos , Cuero Cabelludo/microbiología , Piel/microbiología , Terbinafina , Tiña del Cuero Cabelludo/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA