Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Intervalo de año de publicación
1.
Protoplasma ; 259(5): 1255-1269, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35039949

RESUMEN

Paubrasilia echinata (brazilwood) is an endangered native tree from the Brazilian Atlantic Forest whose seeds tolerate maturation drying, but, unlike classic orthodox seeds, they quickly lose viability after shedding. This work analyzed the biochemical and ultrastructural changes during the maturation of brazilwood seeds, with particular attention to the cell walls and organization of the cellular components. The physiological seed maturity was accompanied by increased starch content and decreased soluble sugars. Arabinose increased considerably and was the predominant cell-wall sugar during maturation, suggesting a rise in arabinans that contribute to greater cell wall flexibility. This increase was consistent with the cell wall infolding observed in the hypocotyl axis and cotyledons during the maturation of brazilwood seeds. Ultrastructural analyses showed changes in the number and distribution of protein bodies and amyloplasts and the reorganization of lipid droplets into large drops or masses during seed desiccation. Our findings demonstrate that brazilwood seeds behave like other orthodox seeds during maturation, performing the cell wall and metabolic changes before the major decline in the seed water content. However, the high vacuolization and reorganization of lipid bodies observed at 65 DAA suggest that cell deterioration occurs to some extent at the end of the maturation period and could be responsible for reducing the longevity of the brazilwood dried seeds.


Asunto(s)
Caesalpinia , Pared Celular , Desecación , Germinación/fisiología , Semillas/química
2.
Front Plant Sci ; 6: 721, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26442035

RESUMEN

The high fructan contents in underground organs of Cerrado species, high water solubility, and fast metabolism of these compounds highlight their role as carbon storage and as an adaptive feature in plants under drought. In this study, we showed that anatomical structure, in association with soluble compounds and metabolism of inulin-type fructans were modified in rhizophores of Crysolaena obovata submitted to water suppression and recovery after re-watering. Plants were subjected to daily watering (control), suppression of watering for 22 days (water suppression) and suppression of watering followed by re-watering after 10 days (re-watered). Plants were collected at time 0 and after 3, 7, 10, 12, 17, and 22 days of treatment. In addition to changes in fructan metabolism, high proline content was detected in drought stressed plants, contributing to osmoregulation and recovery after water status reestablishment. Under water suppression, total inulin was reduced from approx. 60 to 40%, mainly due to exohydrolase activity. Concurrently, the activity of fructosyltransferases promoted the production of short chain inulin, which could contribute to the increase in osmotic potential. After re-watering, most parameters analyzed were similar to those of control plants, indicating the resumption of regular metabolism, after water absorption. Inulin sphero-crystals accumulated in parenchymatic cells of the cortex, vascular tissues and pith were reduced under drought and accompanied anatomical changes, starting from day 10. At 22 days of drought, the cortical and vascular tissues were collapsed, and inulin sphero-crystals and inulin content were reduced. The localization of inulin sphero-crystals in vascular tissues of C. obovata, as well as the decrease of total inulin and the increase in oligo:polysaccharide ratio in water stressed plants is consistent with the role of fructans in protecting plants against drought.

3.
An Acad Bras Cienc ; 87(2): 797-812, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26062118

RESUMEN

Among the compounds stored by plants, several functions are assigned to fructans, such as source of energy and protection against drought and extreme temperatures. In the present study we analyzed the anatomy and distribution of fructans in vegetative organs of Dimerostemma vestitum (Asteraceae), an endemic species from the Brazilian campos rupestres. D. vestitumhas amphistomatic and pubescent leaves, with both glandular and non-glandular trichomes. In the basal aerial stem the medulla has two types of parenchyma, which differ from the apical portion. The xylopodium has mixed anatomical origin. Interestingly, although inulin-type fructans with high degree of polymerization were found in all analyzed organs except the leaves, the highest amount and maximum degree of polymerization were detected in the xylopodium. Inulin sphero-crystals were visualized under polarized light in the medulla and in the vascular tissues mainly in the central region of the xylopodium, which has abundant xylem parenchyma. Secretory structures accumulating several compounds but not inulin were identified within all the vegetative organs. The presence of these compounds, in addition to inulin, might be related to the strategies of plants to survive adverse conditions in a semi-arid region, affected seasonally by water restriction and frequently by fire.


Asunto(s)
Asteraceae/anatomía & histología , Asteraceae/metabolismo , Fructanos/metabolismo , Adaptación Fisiológica , Asteraceae/clasificación , Brasil , Fructanos/análisis , Estaciones del Año
4.
J Plant Physiol ; 170(9): 791-800, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23384756

RESUMEN

Inga vera, native to South America, is an important leguminous species used for ecological restoration of riparian forests and its seeds are among the most recalcitrant ones described up to date. In this work, we analysed the metabolic profile, cell ultrastructure as well as cell wall polysaccharides of I. vera seeds in order to better understand its maturation, which allows embryo germination without a quiescent phase. Increased amounts of citric, glutamic, pyroglutamic, and aspartic acids from stages I to II (120 and 129 days after flowering (DAF)) corroborate the hypothesis of high metabolism, shifting from fermentative to aerobic respiration at seed maturity. This phase was characterized by an extensive vacuolization of embryonic cells, which also indicate high metabolic activity. The proportion of arabinose in the cell walls of embryonic axis (approx. 20%) was lower than those found in some orthodox seeds (nearly 40%), suggesting that arabinose-containing polysaccharides, which are thought to provide more flexibility to the cell wall during natural drying, are less abundant in I. vera seeds. Taken together, our results provide evidence that the major changes occurred during early stages of seed maturation of I. vera, indicating that the rapid temporary metabolic shift observed between stages I and II may be related to the lack of desiccation phase, moving directly to germination.


Asunto(s)
Fabaceae , Metaboloma , Semillas , Metabolismo de los Hidratos de Carbono , Pared Celular/metabolismo , Pared Celular/ultraestructura , Cotiledón/crecimiento & desarrollo , Cotiledón/metabolismo , Cotiledón/fisiología , Cotiledón/ultraestructura , Desecación , Fabaceae/crecimiento & desarrollo , Fabaceae/metabolismo , Fabaceae/fisiología , Fabaceae/ultraestructura , Germinación , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Semillas/fisiología , Semillas/ultraestructura , Almidón/análisis , Almidón/metabolismo , Agua/fisiología
5.
An Acad Bras Cienc ; 84(2): 443-54, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22634747

RESUMEN

Inulinase (ß-2,1-D- fructan fructanohydrolase), EC 3.2.1.7, targets the ß-2,1 linkage of inulin, a polyfructan consisting of linear ß-2,1 linked fructose, and hydrolyzes it into fructose. This use provides an alternative to produce fructose syrup through the hydrolysis of inulin. The objective of this work was to study the production, characterization and applications of inulinases from the fungal endophyte CCMB 328 isolated from the Brazilian semi-arid region. Response Surface Methodology (RSM) was employed to evaluate the effect of variables (concentration of glucose and yeast extract), on secreted inulinase activities detected in the culture medium and also in the inulin hydrolysis. The results showed that the best conditions for inulinase production by CCMB 328 are 9.89 g / L for glucose and 1.09 g / L for yeast extract. The concentration of 0.20 mol/L of NaCl and KCl increased the activity of inulinase from CCMB 328 by approximately 63% and 37%, respectively. The results also showed that the inulinase has potential for inulin hydrolysis, whose conversion yields roughly 72.48 % for an initial concentration of inulin at 1% (w/v).


Asunto(s)
Hongos/enzimología , Glicósido Hidrolasas/biosíntesis , Brasil , Clima Desértico , Glicósido Hidrolasas/química
6.
J Plant Physiol ; 165(15): 1572-81, 2008 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-18342987

RESUMEN

In addition to the storage function, fructans in Asteraceae from floras with seasonal growth have been associated with drought and freezing tolerance. Vernonia herbacea, native of the Brazilian Cerrado, bears underground reserve organs, rhizophores, accumulating inulin-type fructans. The rhizophore is a cauline branched system with positive geotropic growth, with the apex (distal region) presenting younger tissues; sprouting of new shoots occurs by development of buds located on the opposite end (proximal region). Plants induced to sprouting by excision of the aerial organs present increased 1-fructan exohydrolase (1-FEH) activity in the proximal region, while plants at the vegetative stage present high 1-sucrose:sucrose fructosyltransferase (1-SST) in the distal region. The aim of the present study was to analyze how low temperature (5 degrees C) could affect fructan-metabolizing enzymes and fructan composition in the different regions of the rhizophores of intact and excised plants. 1-SST and 1-fructan:fructan fructosyltransferase (1-FFT) were higher in the distal region decreasing towards the proximal region in intact plants at the vegetative phase, and were drastically diminished when cold and/or excision were imposed. In contrast, 1-FEH increased in the proximal region of treated plants, mainly in excised plants subjected to cold. The ratio fructo-oligo to fructo-polysaccharides was significantly higher in plants exposed to low temperature (1.17 in intact plants and 1.64 in excised plants) than in plants exposed to natural temperature conditions (0.84 in intact vegetative plants and 0.58 in excised plants), suggesting that oligosaccharides are involved in the tolerance of plants to low temperature via 1-FEH, in addition to 1-FFT. Principal component analysis indicated different response mechanisms in fructan metabolism under defoliation and low temperature, which could be interpreted as part of the strategies to undergo unfavorable environmental conditions prevailing in the Cerrado during winter.


Asunto(s)
Fructanos/metabolismo , Glicósido Hidrolasas/metabolismo , Hexosiltransferasas/metabolismo , Rizoma/enzimología , Vernonia/enzimología , Frío , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo
7.
Mycologia ; 99(4): 493-503, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18065000

RESUMEN

Penicillium janczewskii, isolated from the rhizosphere of Vernonia herbacea, grows rapidly on media containing either sucrose or inulin, although inulin more than sucrose induced the production of inulinases. Three different extracellular beta-fructofuranosidases (two inulinases and one invertase) were purified from fungal cultures grown on sucrose or inulin, through precipitation with ammonium sulfate, and anion-exchange, hydrophobic interaction and gel filtration chromatographies. The optimum temperature of the three enzymes was approximately 60 C, optimum pH 4-5.5 and apparent molecular mass of 80 kDa. K(m) and V(max) values determined for invertase on sucrose were respectively 3.7 10(-4) M and 7.9 10(-2) micromol/min/mL, and on inulin 6.3 10(-2) M and 2.09 10(-2) micromol/min/mL. The values of k(m) for the two inulinases were 8.11 10(-4) and 2.62 10(-3) M, being lower for inulin when compared to those obtained for sucrose. The inulinases did not produce oligofructans from inulin, indicating they are primarily exoinulinases. The differences found in inulinase induction patterns when inulin or sucrose was used seem to be related to modifications on the enzyme properties, mainly concerning substrate affinity.


Asunto(s)
Glicósido Hidrolasas , Inulina/metabolismo , Penicillium/enzimología , Sacarosa/metabolismo , beta-Fructofuranosidasa , Carbono/metabolismo , Medios de Cultivo , Glicósido Hidrolasas/aislamiento & purificación , Glicósido Hidrolasas/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Penicillium/crecimiento & desarrollo , Especificidad por Sustrato , Temperatura , beta-Fructofuranosidasa/aislamiento & purificación , beta-Fructofuranosidasa/metabolismo
8.
Plant Physiol Biochem ; 45(9): 647-56, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17764964

RESUMEN

Fructans are widely distributed in Asteraceae from floras with seasonal growth and are thought to be involved in drought and freezing tolerance, in addition to storage function. Reserve organs of Vernonia herbacea and Viguiera discolor, from the cerrado, and of the perennial herb Smallanthus sonchifolius, endemic to Andean region, store over 80% inulin, with different DP (35, 150, and 15, respectively). The fructan pattern in Asteraceae species could be explained by characteristics of their respective 1-FFTs. Hydrolases and fructosyltransferases from S. sonchifolius, V. herbacea and V. discolor were analyzed in plants at the same environmental conditions. The higher 1-FEH activities found in the species with lower DP, S. sonchifolius and V. herbacea reinforce the hypothesis of the involvement of 1-FEH in fructan profile and suggest that the high DP fructan of V. discolor is a consequence of the low affinity of its 1-FEH to the native long chain inulin. Long term incubation with sucrose suggested that the affinity of 1-FFT of V. discolor for 1-kestose is low when compared to that of V. herbacea. Indeed 1-FFT from V. discolor was shown to be an hDP 1-FFT, preferring longer inulins as acceptors. Conversely, 1-FFT from V. herbacea seems to have a higher affinity for short fructo-oligosaccharides, including 1-kestose, as acceptor substrates. Differences in fructan enzymes of the three Asteraceae provide new information towards the understanding of fructan metabolism and control of carbon flow between low and high DP fructans.


Asunto(s)
Asteraceae/enzimología , Hexosiltransferasas/metabolismo , Hidrolasas/metabolismo , Asteraceae/anatomía & histología , Asteraceae/clasificación , Fructanos , Raíces de Plantas/anatomía & histología , Raíces de Plantas/enzimología
9.
Mycologia ; 97(2): 304-11, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16396337

RESUMEN

Penicillium janczewskii, a filamentous fungus isolated from the rhizosphere of Vernonia herbacea (Asteraceae), grows rapidly on media containing either sucrose or inulin as carbon sources. Maintenance of P. janczewskii on inulin medium induces secretion of proteins with high inulinase activity but results in a mycelium that easily collapses and breaks. We evaluated the influence of inulin on fungal growth and colony morphology and on cell-wall structure and composition in comparison with growth and wall characteristics on sucrose-containing medium. P. janczewskii grown on Czapek medium with agar containing 1% (w/v) sucrose or inulin showed differences in the color and morphology of the colonies, although growth rates were similar on both carbon sources. Scanning-electron microscopy revealed that the hyphae from fungus grown on inulin-containing medium are much thinner than those from fungus cultivated on sucrose. Ultrastructural analysis of 5 d old cultures using transmission-electron microscopy indicated significant differences in the cell-wall thickness between hyphae grown on inulin or sucrose media. No differences were detected in the overall carbohydrate and protein contents of cell walls isolated from cultures grown on the two carbon sources. Glycosyl composition analyses showed glucose and galactose as the predominant neutral monosaccharides in the walls but showed no differences attributable to the carbon source. Glycosyl linkage composition analyses indicated a predominance of 3-linked glucopyranosyl in the hyphal walls when P. janczewskii was grown on inulin-containing medium. Our results suggest that growth on inulin as the sole carbon source results in structural changes in the mycelia of P. janczewskii that lead to mycelial walls with altered physical and biological properties.


Asunto(s)
Pared Celular/química , Pared Celular/ultraestructura , Inulina/metabolismo , Penicillium/química , Carbohidratos/análisis , Proteínas Fúngicas/análisis , Hifa/ultraestructura , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Penicillium/crecimiento & desarrollo , Penicillium/ultraestructura , Sacarosa/metabolismo
10.
Braz. arch. biol. technol ; 47(3): 363-373, July 2004. ilus, tab, graf
Artículo en Inglés | LILACS | ID: lil-363415

RESUMEN

A vegetação herbácea do cerrado brasileiro apresenta sistemas subterrâneos ricos em frutanos e estacionalmente expostos à restrição hídrica. A fim de avaliar o envolvimento dos frutanos na tolerância à dessecação foram conduzidos experimentos utilizando plantas intactas e fragmentos de rizóforos de Vernonia herbacea. O conteúdo de água nos rizóforos de plantas intactas foi mantido por 30 dias, quando as plantas foram molhadas a cada 7 ou 15 dias, sendo que as plantas permaneceram vivas até 60 dias sem água. O conteúdo total de frutanos, a razão oligo/polissacarídeos e a massa molecular média dos polissacarídeos nessas plantas aumentaram, indicando haver ocorrido despolimerização de moléculas com tamanho intermediário das cadeias. Nos fragmentos apicais de rizóforos submetidos à dessecação, os oligossacarídeos aumentaram em relação aos polissacarídeos, um dia após a excisão dos tecidos tratados. Essas alterações foram facilmente detectadas através dos perfis de oligossacarídeos analisados por HPLC, nos quais a proporção de frutose livre e de frutanos com GP 4 - 10 aumentou acentuadamente. Os resultados indicam que o metabolismo de frutanos está envolvido na tolerância à dessecação de Vernonia herbacea.

11.
Braz. j. microbiol ; 33(2): 127-130, Apr.-Jun. 2002. ilus
Artículo en Inglés | LILACS | ID: lil-330256

RESUMEN

Penicillium janczewskii Zaleski is an efficient microorganism for the production of extracellular inulinases and grows rapidly on medium containing sucrose or inulin as carbon source. Maintenance of this filamentous fungus on inulin medium induces secretion of large amounts of inulinases, but the resulting mycelium has thinner cell walls that easily collapse and break. Woronin bodies in hyphae of P. janczewskii grown on sucrose and inulin substrates were observed. No significant differences in the number, location, size and shape of Woronin bodies and level of plugging were observed in cultures of the fungus grown on the two carbon sources. The data indicate that the presence of Woronin bodies in P. janczewskii could not be associated with more easily damaged hyphae, although the function of these organelles in pore plugging has been confirmed.


Asunto(s)
Hongos , Técnicas In Vitro , Inulina , Penicillium , Sacarosa , Medios de Cultivo , Métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA