Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros













Intervalo de año de publicación
1.
Eur Respir J ; 55(6)2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32265310

RESUMEN

The severe respiratory consequences of the coronavirus disease 2019 (COVID-19) pandemic have prompted urgent need for novel therapies. Cell-based approaches, primarily using mesenchymal stem (stromal) cells (MSCs), have demonstrated safety and possible efficacy in patients with acute respiratory distress syndrome (ARDS), although they are not yet well studied in respiratory virus-induced ARDS. Limited pre-clinical data suggest that systemic MSC administration can significantly reduce respiratory virus (influenza strains H5N1 and H9N2)-induced lung injury; however, there are no available data in models of coronavirus respiratory infection.There is a rapidly increasing number of clinical investigations of cell-based therapy approaches for COVID-19. These utilise a range of different cell sources, doses, dosing strategies and targeted patient populations. To provide a rational strategy to maximise potential therapeutic use, it is critically important to understand the relevant pre-clinical studies and postulated mechanisms of MSC actions in respiratory virus-induced lung injuries. This review presents these, along with consideration of current clinical investigations.


Asunto(s)
Infecciones por Coronavirus/terapia , Medios de Cultivo Condicionados , Gripe Humana/terapia , Lesión Pulmonar/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Neumonía Viral/terapia , Síndrome de Dificultad Respiratoria/terapia , Enzima Convertidora de Angiotensina 2 , Animales , Betacoronavirus , COVID-19 , Tratamiento Basado en Trasplante de Células y Tejidos , Vesículas Extracelulares/trasplante , Humanos , Subtipo H5N1 del Virus de la Influenza A , Subtipo H9N2 del Virus de la Influenza A , Lesión Pulmonar/virología , Células Madre Mesenquimatosas/metabolismo , Infecciones por Orthomyxoviridae/terapia , Pandemias , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2 , Serina Endopeptidasas/metabolismo
2.
EMBO Rep ; 21(2): e48052, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31984629

RESUMEN

Mesenchymal stem cells (MSCs) have fueled ample translation for the treatment of immune-mediated diseases. They exert immunoregulatory and tissue-restoring effects. MSC-mediated transfer of mitochondria (MitoT) has been demonstrated to rescue target organs from tissue damage, yet the mechanism remains to be fully resolved. Therefore, we explored the effect of MitoT on lymphoid cells. Here, we describe dose-dependent MitoT from mitochondria-labeled MSCs mainly to CD4+ T cells, rather than CD8+ T cells or CD19+ B cells. Artificial transfer of isolated MSC-derived mitochondria increases the expression of mRNA transcripts involved in T-cell activation and T regulatory cell differentiation including FOXP3, IL2RA, CTLA4, and TGFß1, leading to an increase in a highly suppressive CD25+ FoxP3+ population. In a GVHD mouse model, transplantation of MitoT-induced human T cells leads to significant improvement in survival and reduction in tissue damage and organ T CD4+ , CD8+ , and IFN-γ+ expressing cell infiltration. These findings point to a unique CD4+ T-cell reprogramming mechanism with pre-clinical proof-of-concept data that pave the way for the exploration of organelle-based therapies in immune diseases.


Asunto(s)
Células Madre Mesenquimatosas , Linfocitos T CD8-positivos , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Mitocondrias , Linfocitos T Reguladores
3.
Gene Ther ; 27(1-2): 2-5, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-30962535

RESUMEN

Rigorous testing of cell therapies in South America struggles with emerging opportunities and regulatory deficiencies. As in other continents, these tend to be permissive with commercial opportunism but stifling for research. We describe a successful biotechnological entrepreneurship, born from within an academic institution, to foster science and promote translational research. Sustainability, however, requires a more complex niche, and realistic contributions from investors, state agencies, and legislators. An added level of complexity is required to enable multicentric studies. Herein we succinctly describe some of the most urgent challenges that the deployment of cell therapy faces in Chile. If this is truly an aspiration, fantasy should not be allowed to direct regulatory agents or legislators, and our Latin American Magic realism should remain within the realm of literary fiction.


Asunto(s)
Investigación/tendencias , Investigación con Células Madre/ética , Investigación Biomédica Traslacional/tendencias , Diferenciación Celular , Humanos , América Latina/epidemiología , Células Madre/metabolismo
4.
Kidney Res Clin Pract ; 38(2): 176-185, 2019 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-31189223

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) is a growing public health concern, and available treatments are insufficient in limiting disease progression. New strategies, including regenerative cell-based therapies, have emerged as therapeutic alternatives. Results from several groups, including our own, have reported evidence of a supportive role for mesenchymal stromal cells (MSCs) in functional recovery and prevention of tissue damage in murine models of CKD. Prompted by these data, an open pilot study was conducted to assess the safety and efficacy of a single injection of autologous adipose tissue-derived MSCs (AT-MSCs) for treatment of CKD. METHODS: AT-MSCs were infused intravenously into six CKD patients at a dose of 1 million cells/kg. Patients were stabilized and followed for one year prior to MSC infusion and one year following infusion. RESULTS: No patients presented with adverse effects. Statistically significant improvement in urinary protein excretion was observed in AT-MSCs transplanted patients, from a median of 0.75 g/day (range, 0.15-9.57) at baseline to 0.54 g/day (range, 0.01-2.66) at month 12 (P = 0.046). The glomerular filtration rate was not significantly decreased post-infusion of AT-MSCs. CONCLUSION: Findings from this pilot study demonstrate that intravenous infusion of autologous expanded AT-MSCs into CKD patients was not associated with adverse effects and could benefit patients already undergoing standard medical treatment.

5.
Stem Cells Transl Med ; 8(3): 215-224, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30592390

RESUMEN

Knee osteoarthritis (OA) is a leading cause of pain and disability. Although conventional treatments show modest benefits, pilot and phase I/II trials with bone marrow (BM) and adipose-derived (AD) mesenchymal stromal cells (MSCs) point to the feasibility, safety, and occurrence of clinical and structural improvement in focal or diffuse disease. This study aimed to assess the safety and efficacy of the intra-articular injection of single or repeated umbilical cord-derived (UC) MSCs in knee OA. UC-MSCs were cultured in an International Organization for Standardization 9001:2015 certified Good Manufacturing Practice-type Laboratory. Patients with symptomatic knee OA were randomized to receive hyaluronic acid at baseline and 6 months (HA, n = 8), single-dose (20 × 106 ) UC-MSC at baseline (MSC-1, n = 9), or repeated UC-MSC doses at baseline and 6 months (20 × 106 × 2; MSC-2, n = 9). Clinical scores and magnetic resonance images (MRIs) were assessed throughout the 12 months follow-up. No severe adverse events were reported. Only MSC-treated patients experienced significant pain and function improvements from baseline (p = .001). At 12 months, Western Ontario and Mc Master Universities Arthritis Index (WOMAC-A; pain subscale) reached significantly lower levels of pain in the MSC-2-treated group (1.1 ± 1.3) as compared with the HA group (4.3 ± 3.5; p = .04). Pain Visual Analog scale was significantly lower in the MSC-2 group versus the HA group (2.4 ± 2.1 vs. 22.1 ± 9.8, p = .03) at 12 months. For total WOMAC, MSC-2 had lower scores than HA at 12 months (4.2 ± 3.9 vs. 15.2 ± 11, p = .05). No differences in MRI scores were detected. In a phase I/II trial (NCT02580695), repeated UC-MSC treatment is safe and superior to active comparator in knee OA at 1-year follow-up. Stem Cells Translational Medicine 2019;8:215&224.


Asunto(s)
Ácido Hialurónico/administración & dosificación , Células Madre Mesenquimatosas/citología , Osteoartritis de la Rodilla/tratamiento farmacológico , Osteoartritis de la Rodilla/terapia , Cordón Umbilical/citología , Adulto , Médula Ósea/fisiología , Método Doble Ciego , Femenino , Humanos , Inyecciones Intraarticulares/métodos , Masculino , Trasplante de Células Madre Mesenquimatosas/métodos , Persona de Mediana Edad , Escala Visual Analógica
6.
Front Immunol ; 9: 802, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29760692

RESUMEN

The therapeutic effect of mesenchymal stem cells (MSCs) in multiple sclerosis (MS) and the experimental autoimmune encephalomyelitis (EAE) model has been well described. This effect is, in part, mediated through the inhibition of IL17-producing cells and the generation of regulatory T cells. While proinflammatory cytokines such as IFNγ, TNFα, and IL1ß have been shown to enhance MSCs immunosuppressive function, the role of IL17 remains poorly elucidated. The aim of this study was, therefore, to investigate the role of the IL17/IL17R pathway on MSCs immunoregulatory effects focusing on Th17 cell generation in vitro and on Th17-mediated EAE pathogenesis in vivo. In vitro, we showed that the immunosuppressive effect of MSCs on Th17 cell proliferation and differentiation is partially dependent on IL17RA expression. This was associated with a reduced expression level of MSCs immunosuppressive mediators such as VCAM1, ICAM1, and PD-L1 in IL17RA-/- MSCs as compared to wild-type (WT) MSCs. In the EAE model, we demonstrated that while WT MSCs significantly reduced the clinical scores of the disease, IL17RA-/- MSCs injected mice exhibited a clinical worsening of the disease. The disability of IL17RA-/- MSCs to reduce the progression of the disease paralleled the inability of these cells to reduce the frequency of Th17 cells in the draining lymph node of the mice as compared to WT MSCs. Moreover, we showed that the therapeutic effect of MSCs was correlated with the generation of classical Treg bearing the CD4+CD25+Foxp3+ signature in an IL17RA-dependent manner. Our findings reveal a novel role of IL17RA on MSCs immunosuppressive and therapeutic potential in EAE and suggest that the modulation of IL17RA in MSCs could represent a novel method to enhance their therapeutic effect in MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Interleucina-17/inmunología , Trasplante de Células Madre Mesenquimatosas , Receptores de Interleucina-17/inmunología , Transducción de Señal/inmunología , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Th17/inmunología
7.
Circ Res ; 121(10): 1192-1204, 2017 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-28974553

RESUMEN

RATIONALE: Umbilical cord-derived mesenchymal stem cells (UC-MSC) are easily accessible and expanded in vitro, possess distinct properties, and improve myocardial remodeling and function in experimental models of cardiovascular disease. Although bone marrow-derived mesenchymal stem cells have been previously assessed for their therapeutic potential in individuals with heart failure and reduced ejection fraction, no clinical trial has evaluated intravenous infusion of UC-MSCs in these patients. OBJECTIVE: Evaluate the safety and efficacy of the intravenous infusion of UC-MSC in patients with chronic stable heart failure and reduced ejection fraction. METHODS AND RESULTS: Patients with heart failure and reduced ejection fraction under optimal medical treatment were randomized to intravenous infusion of allogenic UC-MSCs (Cellistem, Cells for Cells S.A., Santiago, Chile; 1×106 cells/kg) or placebo (n=15 per group). UC-MSCs in vitro, compared with bone marrow-derived mesenchymal stem cells, displayed a 55-fold increase in the expression of hepatocyte growth factor, known to be involved in myogenesis, cell migration, and immunoregulation. UC-MSC-treated patients presented no adverse events related to the cell infusion, and none of the patients tested at 0, 15, and 90 days presented alloantibodies to the UC-MSCs (n=7). Only the UC-MSC-treated group exhibited significant improvements in left ventricular ejection fraction at 3, 6, and 12 months of follow-up assessed both through transthoracic echocardiography (P=0.0167 versus baseline) and cardiac MRI (P=0.025 versus baseline). Echocardiographic left ventricular ejection fraction change from baseline to month 12 differed significantly between groups (+7.07±6.22% versus +1.85±5.60%; P=0.028). In addition, at all follow-up time points, UC-MSC-treated patients displayed improvements of New York Heart Association functional class (P=0.0167 versus baseline) and Minnesota Living with Heart Failure Questionnaire (P<0.05 versus baseline). At study completion, groups did not differ in mortality, heart failure admissions, arrhythmias, or incident malignancy. CONCLUSIONS: Intravenous infusion of UC-MSC was safe in this group of patients with stable heart failure and reduced ejection fraction under optimal medical treatment. Improvements in left ventricular function, functional status, and quality of life were observed in patients treated with UC-MSCs. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov/ct2/show/NCT01739777. Unique identifier: NCT01739777.


Asunto(s)
Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Cordón Umbilical/trasplante , Anciano , Movimiento Celular/fisiología , Método Doble Ciego , Femenino , Humanos , Infusiones Intravenosas , Masculino , Células Madre Mesenquimatosas/fisiología , Persona de Mediana Edad , Resultado del Tratamiento
8.
Stem Cells ; 34(2): 456-69, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26528946

RESUMEN

Recently, a noninvasive and highly proliferative stem cell population from menstrual blood called MenSCs has been identified. Despite their use in clinical studies, their immunomodulatory properties have not yet been investigated. In this context, we studied the immunosuppressive properties of MenSCs in comparison with the well-characterized bone marrow derived-MSCs (BM-MSCs). Using an in vitro proliferation assays, we showed that MenSCs displayed a lower suppressive effect on peripheral blood mononuclear cells and in particular on the proinflammatory CD4(+) IFN-γ(+) and CD8(+) IFNγ(+) cells than BM-MSCs. Moreover, compared to BM-MSCs, MenSCs activated with IFN-γ and IL-1ß produced lower amounts of immunosuppressive factors such as IDO, PDL-1, PGE2, and Activin A and exhibited a substantial lower expression level of IFN-γ receptor subunits. In the collagen induced arthritis model, while BM-MSCs administration resulted in a potent therapeutic effect associated with a significant decrease of proinflammatory T cell frequency in the lymph nodes, MenSCs injection did not. In contrast, in the xeno-GVHD model, only MenSCs administration significantly increased the survival of mice. This beneficial effect mediated by MenSCs was associated with a higher capacity to migrate into the intestine and liver and not to their anti-inflammatory capacities. All together our results demonstrate for the first time that the therapeutic potential of MSC in the experimental xeno-GVHD model is independent of their immunosuppressive properties. These findings should be taken into consideration for the development of safe and effective cell therapies.


Asunto(s)
Artritis Experimental/terapia , Enfermedad Injerto contra Huésped/terapia , Ciclo Menstrual , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/inmunología , Tolerancia al Trasplante , Adolescente , Adulto , Artritis Experimental/inmunología , Artritis Experimental/patología , Femenino , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/patología , Xenoinjertos , Humanos , Masculino , Persona de Mediana Edad
9.
Stem Cell Res Ther ; 6: 199, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26474552

RESUMEN

INTRODUCTION: Sepsis is a clinical syndrome associated with a severe systemic inflammation induced by infection. Although different anti-microbial drugs have been used as treatments, morbidity and mortality rates remain high. Mesenchymal stem cells (MSCs) derived from the bone marrow have demonstrated a partial protective effect in sepsis. Menstrual derived MSCs (MenSCs) emerge as an attractive candidate because they present important advantages over other sources, including improved proliferation rates and paracrine response under specific stress conditions. Here, we evaluate their therapeutic effect in a polymicrobial severe sepsis model. METHODS: The antimicrobial activity of MenSCs was determined in vitro through direct and indirect bacterial growth assays and the measurement of the expression levels of different antimicrobial peptides (AMPs) by quantitative reverse transcription-polymerase chain reaction. The therapeutic effect of MenSCs was determined in the cecal ligation and puncture (CLP) mouse model. Mice were then treated with antibiotics (AB) or MenSCs alone or in combination. The survival rates and histological and biochemical parameters were evaluated, and the systemic levels of pro- and anti-inflammatory cytokines as well as the response of specific lymphocyte subsets were determined by flow cytometry. RESULTS: MenSCs exerted an important antimicrobial effect in vitro, mediated by a higher expression of the AMP-hepcidin. In the CLP mouse model, MenSCs in synergy with AB (a) improved the survival rate (95 %) in comparison with saline (6 %), AB (73 %), and MenSCs alone (48 %) groups; (b) enhanced bacterial clearance in the peritoneal fluids and blood; (c) reduced organ injuries evaluated by lower concentrations of the liver enzymes alanine aminotransferase and aspartate aminotransferase; and (d) modulated the inflammatory response through reduction of pro- and anti-inflammatory cytokines without significant loss of T and B lymphocytes. CONCLUSIONS: We conclude that MenSCs in combination with AB enhance survival in CLP-induced sepsis by acting on multiples targets. MenSCs thus constitute a feasible approach for the future clinical treatment of sepsis.


Asunto(s)
Antibacterianos/administración & dosificación , Menstruación/sangre , Trasplante de Células Madre Mesenquimatosas , Sepsis/tratamiento farmacológico , Sepsis/terapia , Animales , Células Cultivadas , Terapia Combinada , Medios de Cultivo Condicionados , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Hepcidinas/biosíntesis , Humanos , Mediadores de Inflamación/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Sepsis/fisiopatología
10.
Stem Cells Transl Med ; 4(10): 1109-21, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26273064

RESUMEN

UNLABELLED: Mesenchymal stem cells (MSCs) of placental origin have become increasingly translational owing to their abundance and accessibility. MSCs of different origin share several features but also present biological differences that might point to distinct clinical properties. Hence, mixing fetal and maternal cells from the same placenta can lead to contradicting results. We analyzed the biological characteristics of haploidentical MSCs isolated from fetal sources, including the umbilical cord (UC-MSCs) and chorion (Ch-MSCs), compared with maternal decidua MSCs (Dc-MSCs). All MSCs were analyzed for general stem cell properties. In addition, immunosuppressive capacity was assessed by the inhibition of T-cell proliferation, and angiogenic potential was evaluated in a Matrigel transplantation assay. The comparison between haploidentical MSCs displayed several distinct features, including (a) marked differences in the expression of CD56, (b) a higher proliferative capacity for Dc-MSCs and UC-MSCs than for Ch-MSCs, (c) a diversity of mesodermal differentiation potential in favor of fetal MSCs, (d) a higher capacity for Ch-MSCs to inhibit T-cell proliferation, and (e) superior angiogenic potential of Ch-MSCs evidenced by a higher capability to form tubular vessel-like structures and an enhanced release of hepatocyte growth factor and vascular endothelial growth factor under hypoxic conditions. Our results suggest that assessing the prevalence of fetomaternal contamination within placental MSCs is necessary to increase robustness and limit side effects in their clinical use. Finally, our work presents evidence positioning fetoplacental cells and notably Ch-MSCs in the forefront of the quest for cell types that are superior for applications in regenerative medicine. SIGNIFICANCE: This study analyzed the biological characteristics of mesenchymal stem cells (MSCs) isolated from fetal and maternal placental origins. The findings can be summarized as follows: (a) important differences were found in the expression of CD56, (b) a different mesodermal differentiation potential was found in favor of fetal MSCs, (c) a higher immunosuppressive capacity for chorion MSCs was noted, and (d) superior angiogenic potential of Ch-MSCs was observed. These results suggest that assessing the prevalence of fetomaternal contamination within placental MSCs is necessary to increase robustness and limit side effects in their clinical use. The evidence should allow clinicians to view fetoplacental cells, notably Ch-MSCs, favorably as candidates for use in regenerative medicine.


Asunto(s)
Corion/citología , Decidua/citología , Células Madre Mesenquimatosas/citología , Antígeno CD56/biosíntesis , Antígeno CD56/genética , Diferenciación Celular , Células Cultivadas , Femenino , Sangre Fetal/citología , Feto/citología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Terapia de Inmunosupresión , Recién Nacido , Masculino , Neovascularización Fisiológica , Especificidad de Órganos , Medicina Regenerativa , Linfocitos T/inmunología
11.
Rev Med Chil ; 143(4): 415-23, 2015 Apr.
Artículo en Español | MEDLINE | ID: mdl-26204531

RESUMEN

BACKGROUND: Intracoronary delivery of autologous bone marrow mononuclear cells is an interesting therapeutic promise for patients with heart failure of different etiologies. AIM: To evaluate the long-term safety and efficacy of this therapy in patients with dilated cardiomyopathy of different etiologies under optimal medical treatment. PATIENTS AND METHODS: Prospective, open-label, controlled clinical trial. Of 23 consecutive patients, 12 were assigned to autologous bone marrow mononuclear cell intracoronary transplantation, receiving a mean dose of 8.19 ± 4.43 x 10(6) CD34+ cells. Mortality, cardiovascular readmissions and cancer incidence rate, changes in functional capacity, quality of life questionnaires and echocardiographic measures from baseline, were assessed at long-term follow-up (37.7 ± 9.7 months) in patients receiving or not the cells. RESULTS: No significant differences were observed in mortality, cardiovascular readmissions or cancer incidence rate amongst groups. An improvement in functional class and quality of life questionnaires in the transplanted group was observed (p < 0.01). The treated group showed a non-significant increase in left ventricular ejection fraction at long-term follow-up (from 26.75 ± 4.85% to 34.90 ± 8.57%, p = 0.059 compared to baseline). There were no changes in left ventricular volumes. We observed no improvement of these variables in the control group. CONCLUSIONS: Intracoronary transplantation of autologous bone marrow mononuclear cells is feasible and safe in patients with dilated cardiomyopathy of diverse etiologies. This therapy was associated to persistent improvements in functional class and quality of life. There was also a non-significant long-term improvement of left ventricular function.


Asunto(s)
Trasplante de Médula Ósea/métodos , Cardiomiopatía Dilatada/cirugía , Trasplante de Médula Ósea/mortalidad , Volumen Cardíaco/fisiología , Cardiomiopatía Dilatada/diagnóstico por imagen , Cardiomiopatía Dilatada/mortalidad , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Readmisión del Paciente/estadística & datos numéricos , Estudios Prospectivos , Calidad de Vida , Volumen Sistólico/fisiología , Encuestas y Cuestionarios , Factores de Tiempo , Trasplante Autólogo , Resultado del Tratamiento , Ultrasonografía , Función Ventricular/fisiología
12.
Int J Mol Sci ; 16(8): 16953-65, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-26225955

RESUMEN

MicroRNAs control the differentiation and function of B cells, which are considered key elements in the pathogenesis of systemic lupus erythematosus (SLE). However, a common micro(mi)RNA signature has not emerged since published data includes patients of variable ethnic background, type of disease, and organ involvement, as well as heterogeneous cell populations. Here, we aimed at identifying a miRNA signature of purified B cells from renal and non-renal severe SLE patients of Latin American background, a population known to express severe disease. Genome-wide miRNA expression analyses were performed on naive and memory B cells and revealed two categories of miRNA signatures. The first signature represents B cell subset-specific miRNAs deregulated in SLE: 11 and six miRNAs discriminating naive and memory B cells of SLE patients from healthy controls (HC), respectively. Whether the miRNA was up or down-regulated in memory B cells as compared with naive B cells in HC, this difference was abolished in SLE patients, and vice versa. The second signature identifies six miRNAs associated with specific pathologic features affecting renal outcome, providing a further understanding for SLE pathogenesis. Overall, the present work provided promising biomarkers in molecular diagnostics for disease severity as well as potential new targets for therapeutic intervention in SLE.


Asunto(s)
Subgrupos de Linfocitos B/metabolismo , Biomarcadores/metabolismo , Perfilación de la Expresión Génica , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/inmunología , MicroARNs/genética , Adulto , Estudios de Casos y Controles , Chile , Análisis por Conglomerados , Francia , Humanos , Lupus Eritematoso Sistémico/diagnóstico , Nefritis Lúpica/diagnóstico , Nefritis Lúpica/genética , MicroARNs/metabolismo
13.
Stem Cell Res Ther ; 6: 32, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25889741

RESUMEN

INTRODUCTION: Stem cells isolated from menstrual fluid (MenSCs) exhibit mesenchymal stem cell (MSCs)-like properties including multi-lineage differentiation capacity. Besides, menstrual fluid has important advantages over other sources for the isolation of MSCs, including ease of access and repeated sampling in a noninvasive manner. Such attributes allow the rapid culture of MenSCs in numbers that are sufficient for therapeutical doses, at lower cell passages. METHODS: In this study, we advance the characterization of MenSC populations in comparison to bone marrow derived mesenchymal stem cells (BM-MSCs) with regards to proliferation, lineage differentiation, migration potential, secretion profile and angiogenic properties in vitro and in a matrigel plug assay in mice. We additionally tested their ability to support hematopoietic stem cell (HSC) expansion in vitro. RESULTS: The phenotypic analysis of MenSCs revealed a profile largely similar to the BM-MSCs with the exception of a higher expression of the adhesion molecule CD49a (alpha1-integrin). Furthermore, the fibroblast colony forming units (CFU-F) from MenSCs yielded a 2 to 4 fold higher frequency of progenitors and their in vitro migration capacity was superior to BM-MSCs. In addition, MenSCs evidenced a superior paracrine response to hypoxic conditions as evidenced by the secretion of vascular endothelial growth factor and basic fibroblast growth factor and also improved angiogenic effect of conditioned media on endothelial cells. Furthermore, MenSCs were able to induce angiogenesis in a matrigel plug assay in vivo. Thus, an 8-fold increase in hemoglobin content was observed in implanted plugs containing MenSCs compared to BM-MSCs. Finally, we demonstrated, for the first time, the capacity of MenSCs to support the ex-vivo expansion of HSCs, since higher expansion rates of the CD34+CD133+ population as well as higher numbers of early progenitor (CFU-GEMM) colonies were observed in comparison to the BM source. CONCLUSIONS: We present evidence showing superiority of MenSCs with respect to several functional aspects, in comparison with BM-MSCs. However, the impact of such properties in their use as adult-derived stem cells for regenerative3 medicine remains to be clarified.


Asunto(s)
Movimiento Celular/fisiología , Células Madre Hematopoyéticas/citología , Ciclo Menstrual/sangre , Células Madre Mesenquimatosas/citología , Neovascularización Fisiológica/fisiología , Adipogénesis/fisiología , Adolescente , Adulto , Animales , Células de la Médula Ósea/citología , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Células Cultivadas , Condrogénesis/fisiología , Células Endoteliales/citología , Femenino , Sangre Fetal/citología , Hemoglobinas/análisis , Humanos , Leucocitos Mononucleares/metabolismo , Ratones , Osteogénesis/fisiología , ARN/biosíntesis , Adulto Joven
14.
Stem Cells Int ; 2015: 140170, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25838828

RESUMEN

Potent immunosuppressive and regenerative properties of mesenchymal stem cells (MSCs) position them as a novel therapy for autoimmune diseases. This research examines the therapeutic effect of MSCs administration at different disease stages in experimental autoimmune encephalomyelitis (EAE). Classical and atypical scores of EAE, associated with Th1 and Th17 response, respectively, and also Treg lymphocytes, were evaluated. MSCs administration at the onset (EAE+MSConset) induced an important amelioration of the clinical signs and less lasting effect at the peak of EAE (EAE+MSCpeak). No effect was observed when MSCs were applied after EAE stabilization (EAE+MSClate). Surprisingly, EAE atypical signs were detected in EAE+MSCpeak and EAE+MSClate mice. However, no correlation was found in Th17/Th1 ratio. Interestingly, regardless of time administration, MSCs significantly reduced IL-6 and also T-bet, RORγT, and Foxp3 mRNA levels in brain samples of EAE mice. The downregulation of IL-6 could restore the well-functioning of the blood-brain barrier of EAE mice, correlated with a decreased number of brain infiltrating leukocytes. These results suggest that the inflammatory status is important to be considered for administering MSCs in autoimmune pathologies, leading to a further research to clarify the effect of MSCs for multiple sclerosis.

15.
Rev. méd. Chile ; 143(4): 415-423, abr. 2015. ilus, tab
Artículo en Español | LILACS | ID: lil-747546

RESUMEN

Background: Intracoronary delivery of autologous bone marrow mononuclear cells is an interesting therapeutic promise for patients with heart failure of different etiologies. Aim: To evaluate the long-term safety and efficacy of this therapy in patients with dilated cardiomyopathy of different etiologies under optimal medical treatment. Patients and Methods: Prospective, open-label, controlled clinical trial. Of 23 consecutive patients, 12 were assigned to autologous bone marrow mononuclear cell intracoronary transplantation, receiving a mean dose of 8.19 ± 4.43 x 10(6) CD34+ cells. Mortality, cardiovascular readmissions and cancer incidence rate, changes in functional capacity, quality of life questionnaires and echocardiographic measures from baseline, were assessed at long-term follow-up (37.7 ± 9.7 months) in patients receiving or not the cells. Results: No significant differences were observed in mortality, cardiovascular readmissions or cancer incidence rate amongst groups. An improvement in functional class and quality of life questionnaires in the transplanted group was observed (p < 0.01). The treated group showed a non-significant increase in left ventricular ejection fraction at long-term follow-up (from 26.75 ± 4.85% to 34.90 ± 8.57%, p = 0.059 compared to baseline). There were no changes in left ventricular volumes. We observed no improvement of these variables in the control group. Conclusions: Intracoronary transplantation of autologous bone marrow mononuclear cells is feasible and safe in patients with dilated cardiomyopathy of diverse etiologies. This therapy was associated to persistent improvements in functional class and quality of life. There was also a non-significant long-term improvement of left ventricular function.


Asunto(s)
Femenino , Humanos , Masculino , Persona de Mediana Edad , Trasplante de Médula Ósea/métodos , Cardiomiopatía Dilatada/cirugía , Trasplante de Médula Ósea/mortalidad , Volumen Cardíaco/fisiología , Cardiomiopatía Dilatada/mortalidad , Cardiomiopatía Dilatada , Estudios de Seguimiento , Readmisión del Paciente/estadística & datos numéricos , Estudios Prospectivos , Calidad de Vida , Volumen Sistólico/fisiología , Encuestas y Cuestionarios , Factores de Tiempo , Trasplante Autólogo , Resultado del Tratamiento , Función Ventricular/fisiología
16.
Rev Med Chil ; 142(8): 1034-46, 2014 Aug.
Artículo en Español | MEDLINE | ID: mdl-25424676

RESUMEN

Available medical therapy is unable to completely prevent or revert the pathological cardiac remodeling secondary to ischemia or other injuries, which is responsible for the development of heart failure. Regenerative medicine through stem cells had an explosive development in the cardiovascular area during the past decade. Stem cells possess the capacity to regenerate, repair or substitute damaged tissue, allowing the reestablishment of its function. Stem cells can also modulate apoptosis, angiogenesis, fibrosis and inflammation, favoring the endogenous regenerative process initiated by the damaged tissue. These capacities have been corroborated in several animal models of cardiovascular diseases with positive results. In humans, therapies with bone marrow mononuclear stem cells, mesenchymal stem cells and cardiac stem cells are safe. Most randomized clinical trials in patients with myocardial infarction or cardiomyopathies of different etiologies have reported benefits on ventricular function, quality of life and even over mortality of treated patients. This article reviews the state of art of stem cell therapy in cardiovascular diseases, focusing on the most common cellular types used in patients with acute myocardial infarction and chronic cardiomyopathies of different etiologies.


Asunto(s)
Enfermedades Cardiovasculares/cirugía , Trasplante de Células Madre/métodos , Transdiferenciación Celular , Enfermedad Crónica , Cardiopatías/cirugía , Humanos , Células Madre Multipotentes/fisiología , Células Madre Multipotentes/trasplante , Infarto del Miocardio/cirugía
17.
Rev. méd. Chile ; 142(8): 1034-1046, ago. 2014. ilus, graf, tab
Artículo en Español | LILACS | ID: lil-728352

RESUMEN

Available medical therapy is unable to completely prevent or revert the pathological cardiac remodeling secondary to ischemia or other injuries, which is responsible for the development of heart failure. Regenerative medicine through stem cells had an explosive development in the cardiovascular area during the past decade. Stem cells possess the capacity to regenerate, repair or substitute damaged tissue, allowing the reestablishment of its function. Stem cells can also modulate apoptosis, angiogenesis, fibrosis and inflammation, favoring the endogenous regenerative process initiated by the damaged tissue. These capacities have been corroborated in several animal models of cardiovascular diseases with positive results. In humans, therapies with bone marrow mononuclear stem cells, mesenchymal stem cells and cardiac stem cells are safe. Most randomized clinical trials in patients with myocardial infarction or cardiomyopathies of different etiologies have reported benefits on ventricular function, quality of life and even over mortality of treated patients. This article reviews the state of art of stem cell therapy in cardiovascular diseases, focusing on the most common cellular types used in patients with acute myocardial infarction and chronic cardiomyopathies of different etiologies.


Asunto(s)
Humanos , Enfermedades Cardiovasculares/cirugía , Trasplante de Células Madre/métodos , Transdiferenciación Celular , Enfermedad Crónica , Cardiopatías/cirugía , Células Madre Multipotentes/fisiología , Células Madre Multipotentes/trasplante , Infarto del Miocardio/cirugía
18.
Front Immunol ; 5: 205, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24904569

RESUMEN

Menstrual-derived stem cells (MenSCs) are a new source of mesenchymal stem cells isolated from the menstrual fluid. Currently, there is a growing interest in their clinical potential due to fact that they are multipotent, highly proliferative, and easy to obtain in a non-invasive manner. Sampling can be repeated periodically in a simplified and reproducible manner devoid of complications that no existing cell source can match. MenSCs are also free of ethical dilemmas, and display novel properties with regard to presently known adult derived stem cells. This review details their distinctive biological properties regarding immunophenotype and function, proliferation rate, differentiation potential, and paracrine effects mediated by secreted factors. Their possible role in antenatal diagnosis is also discussed. While more insight on their immunomodulatory and diagnostic properties is needed, the impact of clinical and epidemiological factors, such as age, use of contraceptives, or hormonal status still requires further investigations to properly assess their current and future use in clinical application and diagnosis.

19.
Expert Opin Drug Discov ; 9(5): 555-66, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24655067

RESUMEN

INTRODUCTION: Patients with systemic lupus erythematosus (SLE) are at increased risk for premature death, particularly among young adults, and present dilemmas regarding drug efficacy versus toxicity. Novel therapeutic strategies have included the use of mesenchymal stem cell (MSC) therapies that are promising but still have limitations. In several disease models, it has become apparent that MSCs do not necessarily replace diseased tissues but rather exert complex paracrine effects that are mediated by their extracellular-secreted products. AREAS COVERED: In this review, the authors highlight the data on MSC treatment of SLE and related mechanisms of actions. This data includes the recent evidence that MSC-secreted factors such as extracellular microvesicles (MVs) are important mediators of MSC therapy. Among MVs, the authors delineate the role of exosomes as triggers of regenerative effects in target cells, mediated by transfer of proteins, mRNAs or microRNAs. The authors also outline some of the biological and regulatory restraints encountered by MSC therapy, in contrast to the potential advantages of MSC-derived exosomes as new therapeutic tools in SLE. EXPERT OPINION: There is concern about reproducible data on the use of MSC therapy in rheumatic diseases and specifically SLE. Although most experts consider MSCs to be safe, there are still worries over donor variability, immune-mediated rejection, culture-induced senescence, loss of functional properties and genetic instability or eventual malignant transformation. MSC-released factors could avoid most limiting factors associated with cell therapy and are therefore expected to provide a new and safe therapeutic option at an affordable cost.


Asunto(s)
Lupus Eritematoso Sistémico/terapia , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Animales , Exosomas/metabolismo , Humanos
20.
Biol Res ; 45(2): 193-200, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23096364

RESUMEN

Th17 cells, a recently described subtype of CD4+ effector lymphocytes, have been linked to cell-mediated autoimmune and inflammatory diseases as well as to cardiovascular diseases. However, the participation of IL-17A in myocardial ischemic injury has not been clearly defined. We therefore conducted the present study to evaluate IL-17A and Th17-related cytokine levels in a rat model of myocardial infarction (MI). MI was induced in male Sprague Dawley rats by coronary artery ligation. Controls were sham-operated (Sh) or non-operated (C). Blood and samples from the left ventricle (LV) were collected at weeks 1 and 4 post-MI. At week 1, MI animals exhibited increased IL-6, IL-23 and TGF-ß mRNA levels with no apparent change in IL-17 mRNA or protein levels in whole LV. Only TGF-ß mRNA remained elevated at week 4 post-MI. However, further analysis revealed that IL-17A mRNA and protein levels as well as IL-6 and IL-23 mRNA were indeed increased in the infarcted region, though not in the remote non infarcted region of the LV, except for IL-23 mRNA. The increased expression of IL-17A and Th17-related cytokines in the infarcted region of LV, suggests that this proinflammatory pathway might play a role in early stages of post MI cardiac remodelling.


Asunto(s)
Ventrículos Cardíacos/metabolismo , Interleucina-17/metabolismo , Infarto del Miocardio/metabolismo , Células Th17/metabolismo , Animales , Modelos Animales de Enfermedad , Masculino , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA