Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cardiorenal Med ; 14(1): 460-472, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39134005

RESUMEN

INTRODUCTION: Acute kidney injury (AKI) and myocardial injury (MI) are severe conditions in patients with severe burn injury, and combination of both is even worst and is called the cardiorenal syndrome (CRS). Identifying a distinct cardiorenal phenotype could significantly enhance the management of these patients. Galectin-3 (Gal3) and soluble CD146 (sCD146) are biomarkers for renal and cardiac injuries. This study aims to assess the occurrence and reliability of these biomarkers in recognizing CRS in individuals who have been severely burn. METHODS: This study is a single-center prospective proof-of-concept study involving patients with severe burn injuries. Plasma samples for Gal3 and sCD146 measurements were collected daily during the initial 7 days following admission. CRS was defined after 24 h of admission by the association of AKI stage 1 or more (KDIGO definition) and MI defined on high sensitive troponin (hsTnT) (variation >20% baseline value or absolute value >40 ng/mL). RESULTS: Forty patients met the inclusion criteria and were included in this study. Thirty-eight patients had CRS. The pooled values of Gal3 or combination of Gal3 and sCD146 values following 7 days after admission were associated with CRS with an odds ratio (OR) of 1.145 (95% CI: 1.081-1.211), p < 0.001, and 1.147 (95% CI: 1.085-1.212), p < 0.001, respectively. Gal3 values at admission (D0) had a predictive performance for CRS with an AUC of 0.78 (95% CI: 0.63-0.93), and this performance improved when using the combination of Gal3 and sCD146 values at admission (D0), with an AUC of 0.81 (95% CI: 0.66-0.96). Gal3 levels during the first 7 days were associated with patients experiencing AKI and no MI, with an OR of 1.129 (95% CI: 1.065-1.195), p < 0.001, and MI without AKI with an OR of 1.095 (95% CI: 1.037-1.167), p < 0.001. sCD146 alone was not associated with AKI without MI or MI without AKI and was poorly associated with CRS. CONCLUSION: In severely burned patients, CRS is a frequent and severe condition. Gal3 values during the first 7 days following admission were associated with CRS. The use of sCD146 with Gal3 improved prediction performance for CRS identification. The use of such biomarkers to identify CRS is important and needs to be confirmed in other studies.


Asunto(s)
Lesión Renal Aguda , Biomarcadores , Quemaduras , Antígeno CD146 , Galectina 3 , Humanos , Antígeno CD146/sangre , Masculino , Biomarcadores/sangre , Femenino , Galectina 3/sangre , Persona de Mediana Edad , Quemaduras/complicaciones , Quemaduras/sangre , Estudios Prospectivos , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/sangre , Lesión Renal Aguda/etiología , Adulto , Infarto del Miocardio/sangre , Infarto del Miocardio/complicaciones , Infarto del Miocardio/diagnóstico , Anciano , Galectinas/sangre , Proteínas Sanguíneas
2.
Pharmaceutics ; 15(5)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37242615

RESUMEN

Tacrolimus (Tac) is a calcineurin inhibitor commonly used as an immunosuppressor after solid organ transplantation. However, Tac may induce hypertension, nephrotoxicity, and an increase in aldosterone levels. The activation of the mineralocorticoid receptor (MR) is related to the proinflammatory status at the renal level. It modulates the vasoactive response as they are expressed on vascular smooth muscle cells (SMC). In this study, we investigated whether MR is involved in the renal damage generated by Tac and if the MR expressed in SMC is involved. Littermate control mice and mice with targeted deletion of the MR in SMC (SMC-MR-KO) were administered Tac (10 mg/Kg/d) for 10 days. Tac increased the blood pressure, plasma creatinine, expression of the renal induction of the interleukin (IL)-6 mRNA, and expression of neutrophil gelatinase-associated lipocalin (NGAL) protein, a marker of tubular damage (p < 0.05). Our study revealed that co-administration of spironolactone, an MR antagonist, or the absence of MR in SMC-MR-KO mice mitigated most of the unwanted effects of Tac. These results enhance our understanding of the involvement of MR in SMC during the adverse reactions of Tac treatment. Our findings provided an opportunity to design future studies considering the MR antagonism in transplanted subjects.

3.
Front Cardiovasc Med ; 8: 644797, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34179130

RESUMEN

Diabetes mellitus (DM) causes high glucose (HG) levels in the plasma and urine. The (pro)renin receptor (PRR) is a key regulator of renal Na+ handling. PRR is expressed in intercalated (IC) cells of the collecting duct (CD) and binds renin to promote angiotensin (Ang) II formation, thereby contributing to Na+ reabsorption. In DM, the Kreb's cycle is in a state of suppression in most tissues. However, in the CD, expression of glucose transporters is augmented, boosting the Kreb's cycle and consequently causing α-ketoglutarate (αKG) accumulation. The αKG receptor 1 (OXGR1) is a Gq-coupled receptor expressed on the apical membrane of IC cells of the CD. We hypothesize that HG causes αKG secretion and activation of OXGR1, which increases PRR expression in CD cells. This effect then promotes intratubular AngII formation and Na+ reabsorption. To test this hypothesis, streptozotocin (STZ)-induced diabetic mice were treated with or without montelukast (ML), an OXGR1 antagonist, for 6 days. STZ mice had higher urinary αKG and PRR expression along with augmented urinary AngII levels and Na+ retention. Treatment with ML prevented all these effects. Similarly, primary cultured inner medullary CD cells treated with HG showed increased PRR expression, while OXGR1 antagonist prevented this effect. αKG increases PRR expression, while treatments with ML, PKC inhibition, or intracellular Ca2+ depletion impair this effect. In silico analysis suggested that αKG binds to mouse OXGR1. These results indicate that HG conditions promote increased levels of intratubular αKG and OXGR1-dependent PRR upregulation, which impact AngII formation and Na+ reabsorption.

4.
Antioxidants (Basel) ; 10(3)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800425

RESUMEN

Renal diseases are a global health concern, and nearly 24% of kidney disease patients are overweight or obese. Particularly, increased body mass index has been correlated with oxidative stress and urinary albumin excretion in kidney disease patients, also contributing to increased cardiovascular risk. Albumin is the main plasma protein and is able to partially cross the glomerular filtration barrier, being reabsorbed mainly by the proximal tubule through different mechanisms. However, it has been demonstrated that albumin suffers different posttranslational modifications, including oxidation, which appears to be tightly linked to kidney damage progression and is increased in obese patients. Plasma-oxidized albumin levels correlate with a decrease in estimated glomerular filtration rate and an increase in blood urea nitrogen in patients with chronic kidney disease. Moreover, oxidized albumin in kidney disease patients is independently correlated with higher plasma levels of transforming growth factor beta (TGF-ß1), tumor necrosis factor (TNF-α), and interleukin (IL)-1ß and IL-6. In addition, oxidized albumin exerts a direct effect on neutrophils by augmenting the levels of neutrophil gelatinase-associated lipocalin, a well-accepted biomarker for renal damage in patients and in different experimental settings. Moreover, it has been suggested that albumin oxidation occurs at early stages of chronic kidney disease, accelerating the patient requirements for dialytic treatment during disease progression. In this review, we summarize the evidence supporting the role of overweight- and obesity-induced oxidative stress as a critical factor for the progression of renal disease and cardiovascular morbimortality through albumin oxidation.

5.
Int J Mol Sci ; 21(22)2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33198361

RESUMEN

It is well accepted that the immune system and some cells from adaptive and innate immunity are necessary for the initiation/perpetuation of arterial hypertension (AH). However, whether neutrophils are part of this group remains debatable. There is evidence showing that the neutrophil/lymphocyte ratio correlates with AH and is higher in non-dipper patients. On the other hand, the experimental neutrophil depletion in mice reduces basal blood pressure. Nevertheless, their participation in AH is still controversial. Apparently, neutrophils may modulate the microenvironment in blood vessels by increasing oxidative stress, favoring endothelial disfunction. In addition, neutrophils may contribute to the tissue infiltration of immune cells, secreting chemoattractant chemokines/cytokines and promoting the proinflammatory phenotype, leading to AH development. In this work, we discuss the potential role of neutrophils in AH by analyzing different mechanisms proposed from clinical and basic studies, with a perspective on cardiovascular and renal damages relating to the hypertensive phenotype.


Asunto(s)
Hipertensión/metabolismo , Neutrófilos/fisiología , Inmunidad Adaptativa , Animales , Presión Sanguínea , Enfermedades Cardiovasculares/complicaciones , Quimiocinas/metabolismo , Fibrosis/patología , Humanos , Inmunidad Innata , Inflamación , Enfermedades Renales/complicaciones , Ratones , Neutrófilos/citología , Estrés Oxidativo , Fenotipo , Especies Reactivas de Oxígeno/metabolismo
6.
Front Pharmacol ; 10: 1314, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31803050

RESUMEN

Chronic kidney disease (CKD) is characterized by renal dysfunction, which is a common feature of other major diseases, such as hypertension and diabetes. Unilateral ureteral obstruction (UUO) has been used as a model of CKD in experimental animals and consists of total obstruction of one kidney ureter. The UUO decreases renal blood flow, which promotes the synthesis of renin in the juxtaglomerular apparatus, the first step in renin-angiotensin system (RAS) cascade. RAS induces inflammation and remodeling, along with reduced renal function. However, it remains unknown whether intrarenal RAS (iRAS) is activated in early stages of CKD. Our objective was to characterize different iRAS components in the renal cortex and in the medulla in an early phase of UUO. Male C57BL/6 mice (8-12 weeks old) were subjected to UUO in the left kidney, or to sham surgery, and were euthanized after 7 days (n = 5/group). Renal function, renal inflammatory/remodeling processes, and iRAS expression were evaluated. UUO increased plasma creatinine, right renal hypertrophy (9.08 ± 0.31, P < 0.05 vs. Sham), and tubular dilatation in the left kidney cortex (42.42 ± 8.19µm, P < 0.05 vs. Sham). This correlated with the increased mRNA of IL-1ß (1.73 ± 0.14, P < 0.01 vs. Sham, a pro-inflammatory cytokine) and TGF-ß1 (1.76 ± 0.10, P < 0.001 vs. Sham, a pro-fibrotic marker). In the renal cortex of the left kidney, UUO increased the mRNA and protein levels of renin (in 35% and 28%, respectively, P < 0.05 vs. Sham). UUO decreased mRNA and protein levels for the (pro)renin receptor in the renal medulla (0.67 ± 0.036 and 0.88 ± 0.028, respectively, P < 0.05 vs. Sham). Our results suggest that modulation of iRAS components depends on renal localization and occurs in parallel with remodeling and pro-inflammatory/pro-fibrotic mechanisms.

7.
J Hypertens ; 37(7): 1482-1492, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31033725

RESUMEN

BACKGROUND: Adaptive immunity is crucial in cardiovascular and renal inflammation/fibrosis upon hyperactivation of mineralocorticoid receptor. We have previously demonstrated that dendritic cells can respond to mineralocorticoid receptor activation, and the neutrophil gelatinase-associated lipocalin (NGAL) in dendritic cells is highly increased during aldosterone (Aldo)/mineralocorticoid receptor-dependent cardiovascular damage. However, the interrelationship among dendritic cells, target organs inflammation/fibrosis induced by mineralocorticoid receptor, and NGAL-dependence remains unknown. OBJECTIVE: We studied the role of dendritic cells in mineralocorticoid receptor-dependent tissue remodeling and whether NGAL can modulate the inflammatory response of dendritic cells after mineralocorticoid receptor activation. METHODS: Cardiovascular and renal remodeling induced by Aldo and high-salt diet [nephrectomy-Aldo-salt (NAS) model] were analyzed in CD11c.DOG mice, a model which allows dendritic cells ablation by using diphtheria toxin. In addition, in-vitro studies in NGAL-knock out dendritic cells were performed to determine the immunomodulatory role of NGAL upon Aldo treatment. RESULTS: The ablation of dendritic cells prevented the development of cardiac hypertrophy, perivascular fibrosis, and the overexpression of NGAL, brain natriuretic peptide, and two profibrotic factors induced by NAS: collagen 1A1 and connective tissue growth factor. We determined that dendritic cells were not required to prevent renal hypertrophy/fibrosis induced by NAS. Between different immune cells analyzed, we observed that NGAL abundance was higher in antigen-presenting cells, while in-vitro studies showed that mineralocorticoid receptor stimulation in dendritic cells favored NGAL and IL-23 expression (p19 and p40 subunits), which are involved in the development of fibrosis and the Th17-driven response, respectively. CONCLUSION: NGAL produced by dendritic cells may play a pivotal role in the activation of adaptive immunity that leads to cardiovascular fibrosis during mineralocorticoids excess.


Asunto(s)
Sistema Cardiovascular/metabolismo , Células Dendríticas/metabolismo , Lipocalina 2/genética , Receptores de Mineralocorticoides/metabolismo , Aldosterona/metabolismo , Animales , Antígenos CD11/metabolismo , Cardiomegalia , Técnicas de Cocultivo , Femenino , Fibrosis , Hiperaldosteronismo , Inflamación , Subunidad p19 de la Interleucina-23/metabolismo , Riñón/metabolismo , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Péptido Natriurético Encefálico/metabolismo , Cloruro de Sodio Dietético/metabolismo , Linfocitos T/citología
8.
Clin Exp Pharmacol Physiol ; 44(11): 1134-1144, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28696542

RESUMEN

Recent studies suggested that activation of the PRR upregulates profibrotic markers through reactive oxygen species (ROS) formation; however, the exact mechanisms have not been investigated in CD cells. We hypothesized that activation of the PRR increases the expression of profibrotic markers through MAPK-dependent ROS formation in CD cells. Mouse renal CD cell line (M-1) was treated with recombinant prorenin plus ROS or MAPK inhibitors and PRR-shRNA to evaluate their effect on the expression of profibrotic markers. PRR immunostaining revealed plasma membrane and intracellular localization. Recombinant prorenin increases ROS formation (6.0 ± 0.5 vs 3.9 ± 0.1 nmol/L DCF/µg total protein, P < .05) and expression of profibrotic markers CTGF (149 ± 12%, P < .05), α-SMA (160 ± 20%, P < .05), and PAI-I (153 ± 13%, P < .05) at 10-8  mol/L. Recombinant prorenin-induced phospho ERK 1/2 (p44 and p42) at 10-8 and 10-6  mol/L after 20 minutes. Prorenin-dependent ROS formation and augmentation of profibrotic factors were blunted by ROS scavengers (trolox, p-coumaric acid, ascorbic acid), the MEK inhibitor PD98059 and PRR transfections with PRR-shRNA. No effects were observed in the presence of antioxidants alone. Prorenin-induced upregulation of collagen I and fibronectin was blunted by ROS scavenging or MEK inhibition independently. PRR-shRNA partially prevented this induction. After 24 hours prorenin treatment M-1 cells undergo to epithelial-mesenchymal transition phenotype, however MEK inhibitor PD98059 and PRR knockdown prevented this effect. These results suggest that PRR might have a significant role in tubular damage during conditions of high prorenin-renin secretion in the CD.


Asunto(s)
Fibroblastos/citología , Fibroblastos/patología , Riñón/citología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Biomarcadores/metabolismo , Línea Celular , Fibroblastos/metabolismo , Fibrosis , Riñón/patología , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación , Receptor de Prorenina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...