Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Spine J ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39154945

RESUMEN

BACKGROUND: Intraoperative 3D imaging with cone-beam CT (CBCT) improves assessment of implant position and reduces complications in spine surgery. It is also used for image-guided surgical techniques, resulting in improved quality of care. However, in some cases, metal artifacts can reduce image quality and make it difficult to assess pedicle screw position and reduction. PURPOSE: The objective of this study was to investigate whether a change in CBCT acquisition trajectory in relation to pedicle screw position during dorsal instrumentation can reduce metal artifacts and consequently improve image quality and clinical assessability. STUDY DESIGN: Experimental cadaver study METHODS: : A human cadaver was instrumented with pedicle screws in the thoracic and lumbar spine region (Th11 to L5). Then, the acquisition trajectory of the CBCT (Cios Spin, Siemens, Germany) to the pedicle screws was systematically changed in 5° steps in angulation (-30° to +30°) and swivel (-25° to +25°). Subsequently, radiological evaluation was performed by three blinded, qualified raters on image quality using 9 questions (including anatomical structures, implant position, appearance of artifacts) with a score (1-5 points). For statistical evaluation, the image quality of the different acquisition trajectories was compared to the standard acquisition trajectory and checked for significant differences. RESULTS: The angulated acquisition trajectory significantly increased the score for subjective image quality (p<0.001) as well as the clinical assessability of pedicle screw position (p<0.001) with particularly strong effects on subjective image quality in the vertebral pedicle region (d=1.61). Swivel of the acquisition trajectory significantly improved all queried domains of subjective image quality (p<0.001) as well as clinical assessability of pedicle screw position (p<0.001). CONCLUSIONS: In this cadaver study, the angulation as well as the swivel of the acquisition trajectory led to a significantly improved image quality in intraoperative 3D imaging (CBCT) with a constant isocenter. The data show that maximizing the angulation/swivel angle towards 30°/25° provides the best tested subjective image quality and enhances clinical assessability. Therefore, a correct adjustment of the acquisition trajectory can help to make intraoperative revision decisions more reliably. CLINICAL SIGNIFICANCE: The knowledge of enhanced image quality by changing the acquisition trajectory in intraoperative 3D imaging can be used for the assessment of critical screw positions in spine surgery. The implementation of this knowledge requires only a minor change of the current intraoperative imaging workflow without additional technical equipment and could further reduce the need for revision surgery.

2.
JMIR Form Res ; 8: e47572, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38271087

RESUMEN

BACKGROUND: Medical photography plays a pivotal role in modern health care, serving multiple purposes ranging from patient care to medical documentation and education. Specifically, it aids in wound management, surgical planning, and medical training. While digital cameras have traditionally been used, smartphones equipped with specialized apps present an intriguing alternative. Smartphones offer several advantages, including increased usability and efficiency and the capability to uphold medicolegal standards more effectively and consistently. OBJECTIVE: This study aims to assess whether implementing a specialized smartphone app could lead to more frequent and efficient use of medical photography. METHODS: We carried out this study as a comprehensive single-center panel investigation at a level 1 trauma center, encompassing various settings including the emergency department, operating theaters, and surgical wards, over a 6-month period from June to November 2020. Using weekly questionnaires, health care providers were asked about their experiences and preferences with using both digital cameras and smartphones equipped with a specialized medical photography app. Parameters such as the frequency of use, time taken for image upload, and general usability were assessed. RESULTS: A total of 65 questionnaires were assessed for digital camera use and 68 for smartphone use. Usage increased significantly by 5.4 (SD 1.9) times per week (95% CI 1.7-9.2; P=.005) when the smartphone was used. The time it took to upload pictures to the clinical picture and archiving system was significantly shorter for the app (mean 1.8, SD 1.2 min) than for the camera (mean 14.9, SD 24.0 h; P<.001). Smartphone usage also outperformed the digital camera in terms of technical failure (4.4% vs 9.7%; P=.04) and for the technical process of archiving (P<.001) pictures to the picture archiving and communication system (PACS) and display images (P<.001) from it. No difference was found in regard to the photographer's intent (P=.31) or reasoning (P=.94) behind the pictures. Additionally, the study highlighted that potential concerns regarding data security and patient confidentiality were also better addressed through the smartphone app, given its encryption capabilities and password protection. CONCLUSIONS: Specialized smartphone apps provide a secure, rapid, and user-friendly platform for medical photography, showing significant advantages over traditional digital cameras. This study supports the notion that these apps not only have the potential to improve patient care, particularly in the realm of wound management, but also offer substantial medicolegal and economic benefits. Future research should focus on additional aspects such as patient comfort and preference, image resolution, and the quality of photographs, as well as seek to corroborate these findings through a larger sample size.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...