Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
R Soc Open Sci ; 11(2): 231462, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38420629

RESUMEN

For the 40 years after the end of commercial whaling in 1976, humpback whale populations in the North Pacific Ocean exhibited a prolonged period of recovery. Using mark-recapture methods on the largest individual photo-identification dataset ever assembled for a cetacean, we estimated annual ocean-basin-wide abundance for the species from 2002 through 2021. Trends in annual estimates describe strong post-whaling era population recovery from 16 875 (± 5955) in 2002 to a peak abundance estimate of 33 488 (± 4455) in 2012. An apparent 20% decline from 2012 to 2021, 33 488 (± 4455) to 26 662 (± 4192), suggests the population abruptly reached carrying capacity due to loss of prey resources. This was particularly evident for humpback whales wintering in Hawai'i, where, by 2021, estimated abundance had declined by 34% from a peak in 2013, down to abundance levels previously seen in 2006, and contrasted to an absence of decline in Mainland Mexico breeding humpbacks. The strongest marine heatwave recorded globally to date during the 2014-2016 period appeared to have altered the course of species recovery, with enduring effects. Extending this time series will allow humpback whales to serve as an indicator species for the ecosystem in the face of a changing climate.

2.
Sci Rep ; 13(1): 10237, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353581

RESUMEN

We present an ocean-basin-scale dataset that includes tail fluke photographic identification (photo-ID) and encounter data for most living individual humpback whales (Megaptera novaeangliae) in the North Pacific Ocean. The dataset was built through a broad collaboration combining 39 separate curated photo-ID catalogs, supplemented with community science data. Data from throughout the North Pacific were aggregated into 13 regions, including six breeding regions, six feeding regions, and one migratory corridor. All images were compared with minimal pre-processing using a recently developed image recognition algorithm based on machine learning through artificial intelligence; this system is capable of rapidly detecting matches between individuals with an estimated 97-99% accuracy. For the 2001-2021 study period, a total of 27,956 unique individuals were documented in 157,350 encounters. Each individual was encountered, on average, in 5.6 sampling periods (i.e., breeding and feeding seasons), with an annual average of 87% of whales encountered in more than one season. The combined dataset and image recognition tool represents a living and accessible resource for collaborative, basin-wide studies of a keystone marine mammal in a time of rapid ecological change.


Asunto(s)
Yubarta , Animales , Inteligencia Artificial , Océano Pacífico , Estaciones del Año
3.
Chemosphere ; 315: 137785, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36623595

RESUMEN

Gray whales (Eschrichtius robustus) constitute an important part of the diet of Chukotka Native population, reaching 30% of consumed food for the inland Chukchas. Over one hundred licenses for whale hunting are issued on an annual basis. After the USSR collapse natives had to hunt whales near the shore from the small boats. The problem of "stinky" whales arose immediately, as the meat of some harvested species possessed a strong medicinal/chemical odour. The hypotheses explaining the phenomenon ranged from biotoxins, to oil spills. To understand the problem, various tissues of normal and stinky Gray whales were collected in 2020-2021 and analyzed using headspace solid phase microextraction with Gas Chromatography - Mass Spectrometry. Here, we show that dozens of smelly organic compounds were identified among over 500 compounds detected in the samples. The most interesting analytes related to the off odour are bromophenols. The most probable suspect is 2,6-dibromophenol with strong iodoformic odour, perfectly matching that of the "stinky" whales. Quantitative results demonstrated its levels were up to 500-fold higher in the "stinky" whales' tissues. The source of 2,6-dibromophenol is likely polychaetes, producing 2,6-dibromophenol and colonising near shore waters where whales feed. Therefore, the mystery of the stinky whales may be considered resolved.


Asunto(s)
Dieta , Ballenas , Animales , Recolección de Datos
4.
PLoS One ; 15(7): e0236749, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32730308

RESUMEN

Each resident-type (R-type) killer whale pod has a set of stereotyped calls that are culturally transmitted from mother to offspring. The functions of particular call types are not yet clearly understood, but it is believed that calls with two independently modulated frequency components (biphonic calls) play an important role in pod communication and cohesion at long ranges. In this study we examined the possible functions of biphonic calls in R-type killer whales. First, we tested the hypothesis that the additional component enhances the potential of a call to identify the family affiliation. We found that the similarity patterns of the lower- and higher frequency components across the families were largely unrelated. Calls were classified more accurately to their respective family when both lower- and higher-frequency components were considered. Second, we tested the long-range detectability of the lower- and higher-frequency components. After adjusting the received levels by the killer whale hearing sensitivity to different frequency ranges, the sensation level of the higher-frequency component was higher than the amplitude of the lower-frequency component. Our results suggest that the higher-frequency component of killer whale biphonic calls varies independently of the lower-frequency component, which enhances the efficiency of these calls as family markers. The acoustic variation of the higher-frequency component allows the recognition of family identity of a caller even if the shape of the lower-frequency component accidentally becomes similar in unrelated families. The higher-frequency component can also facilitate family recognition when the lower-frequency component is masked by low-frequency noise.


Asunto(s)
Acústica , Reconocimiento en Psicología , Conducta Social , Conducta Estereotipada/fisiología , Vocalización Animal/fisiología , Orca/fisiología , Animales , Femenino , Madres , Ruido
5.
J Hered ; 109(7): 724-734, 2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30184088

RESUMEN

Mitochondrial DNA (mtDNA) differences between humpback whales on different feeding grounds can reflect the cultural transmission of migration destinations over generations, and therefore represent one of the very few cases of gene-culture coevolution identified in the animal kingdom. In Russian Pacific waters, photo-identification (photo-ID) studies have shown minimal interchange between whales feeding off the Commander Islands and those feeding in the Karaginsky Gulf, regions that are separated by only 500 km and have previously been lumped together as a single Russian feeding ground. Here, we assessed whether genetic differentiation exists between these 2 groups of humpback whales. We discovered a strong mtDNA differentiation between the 2 feeding sites (FST = 0.18, ΦST = 0.14, P < 0.001). In contrast, nuclear DNA (nuDNA) polymorphisms, determined at 8 microsatellite loci, did not reveal any differentiation. Comparing our mtDNA results with those from a previous ocean-basin study reinforced the differences between the 2 feeding sites. Humpback whales from the Commanders appeared most similar to those of the western Gulf of Alaska and the Aleutian feeding grounds, whereas Karaginsky differed from all other North Pacific feeding grounds. Comparison to breeding grounds suggests mixed origins for the 2 feeding sites; there are likely connections between Karaginsky and the Philippines and to a lesser extent to Okinawa, Japan, whereas the Commanders are linked to the Mexican breeding grounds. The mtDNA differentiation between the Commander Islands and Karaginsky Gulf suggests a case of gene-culture coevolution, correlated to fidelity to a specific feeding site within a particular feeding ground. From a conservation perspective, our findings emphasize the importance of considering these 2 feeding sites as separate management units.


Asunto(s)
Conducta Alimentaria , Variación Genética , Yubarta/genética , Migración Animal , Animales , Núcleo Celular/genética , ADN Mitocondrial/genética , Femenino , Genotipo , Masculino , Repeticiones de Microsatélite/genética , Océano Pacífico , Procesos de Determinación del Sexo
6.
J Hered ; 109(7): 735-743, 2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30053000

RESUMEN

In the North Pacific, fish-eating R-type "resident" and mammal-eating T-type "transient" killer whales do not interbreed and differ in ecology and behavior. Full-length mitochondrial genomes (about 16.4 kbp) were sequenced and assembled for 12 R-type and 14 T-type killer whale samples from different areas of the western North Pacific. All R-type individuals had the same haplotype, previously described for R-type killer whales from both eastern and western North Pacific. However, haplotype diversity of R-type killer whales was much lower in the western North Pacific than in the Aleutian Islands and the eastern North Pacific. T-type whales had 3 different haplotypes, including one previously undescribed. Haplotype diversity of T-type killer whales in the Okhotsk Sea was also much lower than in the Aleutian Islands and the eastern North Pacific. The highest haplotype diversity for both R- and T-type killer whales was observed in the Aleutian Islands. We discuss how the environmental conditions during the last glacial period might have shaped the history of killer whale populations in the North Pacific. Our results suggest the recent colonization or re-colonization of the western North Pacific by small groups of killer whales originating from the central or eastern North Pacific, possibly due to favorable environmental changes after the Last Glacial Maximum.


Asunto(s)
Efecto Fundador , Variación Genética , Genoma Mitocondrial , Orca/genética , Animales , Haplotipos , Océano Pacífico
7.
Mar Biol ; 164(2): 32, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28203032

RESUMEN

Herring-eating killer whales debilitate herring with underwater tail slaps and likely herd herring into tighter schools using a feeding-specific low-frequency pulsed call ('herding' call). Feeding on herring may be dependent upon daylight, as the whales use their white underside to help herd herring; however, feeding at night has not been investigated. The production of feeding-specific sounds provides an opportunity to use passive acoustic monitoring to investigate feeding behaviour at different times of day. We compared the acoustic behaviour of killer whales between day and night, using an autonomous recorder deployed in Iceland during winter. Based upon acoustic detection of underwater tail slaps used to feed upon herring we found that killer whales fed both at night and day: they spent 50% of their time at night and 73% of daytime feeding. Interestingly, there was a significant diel variation in acoustic behaviour. Herding calls were significantly associated with underwater tail slap rate and were recorded significantly more often at night, suggesting that in low-light conditions killer whales rely more on acoustics to herd herring. Communicative sounds were also related to underwater tail slap rate and produced at different rates during day and night. The capability to adapt feeding behaviour to different light conditions may be particularly relevant for predator species occurring in high latitudes during winter, when light availability is limited.

8.
J Acoust Soc Am ; 140(5): 3755, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27908070

RESUMEN

Odontocete sounds are produced by two pairs of phonic lips situated in soft nares below the blowhole; the right pair is larger and is more likely to produce clicks, while the left pair is more likely to produce whistles. This has important implications for the cultural evolution of delphinid sounds: the greater the physical constraints, the greater the probability of random convergence. In this paper the authors examine the call structure of eight killer whale populations to identify structural constraints and to determine if they are consistent among all populations. Constraints were especially pronounced in two-voiced calls. In the calls of all eight populations, the lower component of two-voiced (biphonic) calls was typically centered below 4 kHz, while the upper component was typically above that value. The lower component of two-voiced calls had a narrower frequency range than single-voiced calls in all populations. This may be because some single-voiced calls are homologous to the lower component, while others are homologous to the higher component of two-voiced calls. Physical constraints on the call structure reduce the possible variation and increase the probability of random convergence, producing similar calls in different populations.


Asunto(s)
Orca , Animales , Evolución Cultural , Sonido , Espectrografía del Sonido , Vocalización Animal
9.
J Acoust Soc Am ; 138(1): 251-7, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26233024

RESUMEN

Killer whale populations may differ in genetics, morphology, ecology, and behavior. In the North Pacific, two sympatric populations ("resident" and "transient") specialize on different prey (fish and marine mammals) and retain reproductive isolation. In the eastern North Atlantic, whales from the same populations have been observed feeding on both fish and marine mammals. Fish-eating North Pacific "residents" are more genetically related to eastern North Atlantic killer whales than to sympatric mammal-eating "transients." In this paper, a comparison of frequency variables in killer whale calls recorded from four North Pacific resident, two North Pacific transient, and two eastern North Atlantic populations is reported to assess which factors drive the large-scale changes in call structure. Both low-frequency and high-frequency components of North Pacific transient killer whale calls have significantly lower frequencies than those of the North Pacific resident and North Atlantic populations. The difference in frequencies could be related to ecological specialization or to the phylogenetic history of these populations. North Pacific transient killer whales may have genetically inherited predisposition toward lower frequencies that may shape their learned repertoires.


Asunto(s)
Ecotipo , Simpatría/fisiología , Vocalización Animal , Orca/fisiología , Animales , Océano Atlántico , Conducta Alimentaria , Océano Pacífico , Sonido
10.
J Theor Biol ; 373: 82-91, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-25817037

RESUMEN

The killer whale is one of the few animal species with vocal dialects that arise from socially learned group-specific call repertoires. We describe a new agent-based model of killer whale populations and test a set of vocal-learning rules to assess which mechanisms may lead to the formation of dialect groupings observed in the wild. We tested a null model with genetic transmission and no learning, and ten models with learning rules that differ by template source (mother or matriline), variation type (random errors or innovations) and type of call change (no divergence from kin vs. divergence from kin). The null model without vocal learning did not produce the pattern of group-specific call repertoires we observe in nature. Learning from either mother alone or the entire matriline with calls changing by random errors produced a graded distribution of the call phenotype, without the discrete call types observed in nature. Introducing occasional innovation or random error proportional to matriline variance yielded more or less discrete and stable call types. A tendency to diverge from the calls of related matrilines provided fast divergence of loose call clusters. A pattern resembling the dialect diversity observed in the wild arose only when rules were applied in combinations and similar outputs could arise from different learning rules and their combinations. Our results emphasize the lack of information on quantitative features of wild killer whale dialects and reveal a set of testable questions that can draw insights into the cultural evolution of killer whale dialects.


Asunto(s)
Evolución Biológica , Modelos Biológicos , Vocalización Animal/fisiología , Orca/fisiología , Animales , Conducta Animal , Femenino , Aprendizaje , Conducta Social , Orca/genética
11.
Behav Processes ; 99: 34-41, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23796775

RESUMEN

The killer whale is among the few species in which cultural change accumulates over many generations, leading to cumulative cultural evolution. Killer whales have group-specific vocal repertoires which are thought to be learned rather than being genetically coded. It is supposed that divergence between vocal repertoires of sister groups increases gradually over time due to random learning mistakes and innovations. In this case, the similarity of calls across groups must be correlated with pod relatedness and, consequently, with each other. In this study we tested this prediction by comparing the patterns of call similarity between matrilines of resident killer whales from Eastern Kamchatka. We calculated the similarity of seven components from three call types across 14 matrilines. In contrast to the theoretical predictions, matrilines formed different clusters on the dendrograms made by different calls and even by different components of the same call. We suggest three possible explanations for this phenomenon. First, the lack of agreement between similarity patterns of different components may be the result of constraints in the call structure. Second, it is possible that call components change in time with different speed and/or in different directions. Third, horizontal cultural transmission of call features may occur between matrilines.


Asunto(s)
Comunicación Animal , Evolución Biológica , Vocalización Animal/fisiología , Orca/fisiología , Animales , Interpretación Estadística de Datos , Conducta Social , Espectrografía del Sonido
12.
J Acoust Soc Am ; 132(6): 3618-21, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23231094

RESUMEN

Ultrasonic whistles were previously found in North Atlantic killer whales and were suggested to occur in eastern North Pacific killer whales based on the data from autonomous recorders. In this study ultrasonic whistles were found in the recordings from two encounters with the eastern North Pacific offshore ecotype killer whales and one encounter with the western North Pacific killer whales of unknown ecotype. All ultrasonic whistles were highly stereotyped and all but two had downsweep contours. These results demonstrate that specific sound categories can be shared by killer whales from different ocean basins.


Asunto(s)
Canto , Ultrasonido , Orca/fisiología , Animales , Masculino , Océano Pacífico , Espectrografía del Sonido
13.
Naturwissenschaften ; 98(1): 1-6, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21072496

RESUMEN

Facial and vocal expressions of emotion have been found in a number of social mammal species and are thought to have evolved to aid social communication. There has been much debate about whether such signals are culturally inherited or are truly biologically innate. Evidence for the innateness of such signals can come from cross-cultural studies. Previous studies have identified a vocalisation (the V4 or 'excitement' call) associated with high arousal behaviours in a population of killer whales in British Columbia, Canada. In this study, we compared recordings from three different socially and reproductively isolated ecotypes of killer whales, including five vocal clans of one ecotype, each clan having discrete culturally transmitted vocal traditions. The V4 call was found in recordings of each ecotype and each vocal clan. Nine independent observers reproduced our classification of the V4 call from each population with high inter-observer agreement. Our results suggest the V4 call may be universal in Pacific killer whale populations and that transmission of this call is independent of cultural tradition or ecotype. We argue that such universality is more consistent with an innate vocalisation than one acquired through social learning and may be linked to its apparent function of motivational expression.


Asunto(s)
Vocalización Animal/fisiología , Orca/fisiología , Animales , Colombia Británica , Humanos , Variaciones Dependientes del Observador , Océano Pacífico , Espectrografía del Sonido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...