Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 5380, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37666802

RESUMEN

Anaerobic digestion of municipal mixed sludge produces methane that can be converted into renewable natural gas. To improve economics of this microbial mediated process, metabolic interactions catalyzing biomass conversion to energy need to be identified. Here, we present a two-year time series associating microbial metabolism and physicochemistry in a full-scale wastewater treatment plant. By creating a co-occurrence network with thousands of time-resolved microbial populations from over 100 samples spanning four operating configurations, known and novel microbial consortia with potential to drive methane production were identified. Interactions between these populations were further resolved in relation to specific process configurations by mapping metagenome assembled genomes and cognate gene expression data onto the network. Prominent interactions included transcriptionally active Methanolinea methanogens and syntrophic benzoate oxidizing Syntrophorhabdus, as well as a Methanoregulaceae population and putative syntrophic acetate oxidizing bacteria affiliated with Bateroidetes (Tenuifilaceae) expressing the glycine cleavage bypass of the Wood-Ljungdahl pathway.


Asunto(s)
Metagenoma , Aguas Residuales , Consorcios Microbianos/genética , Aguas del Alcantarillado , Metano
2.
Sci Total Environ ; 690: 1342-1354, 2019 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-31470496

RESUMEN

Oil and gas development can result in natural gas migration into shallow groundwater. Methane (CH4), the primary component of natural gas, can subsequently react with solutes and minerals in the aquifer to create byproducts that affect groundwater chemistry. Hydro-biogeochemical processes induced by fugitive gas from leaky oil and gas wells are currently not well understood. We monitored the hydro-biogeochemical responses of a controlled natural gas release into a well-studied Pleistocene beach sand aquifer (Canadian Forces Base Borden, Ontario, Canada). Groundwater samples were collected before, during, and up to 700 days after gas injection and analyzed for pH, major and minor ions, alkalinity, dissolved gases, stable carbon isotope ratios of CO2 and CH4, and microbial community composition. Gas injection resulted in a dispersed plume of free and dissolved phase natural gas, affecting groundwater chemistry in two distinct temporal phases. Initially (i.e. during and immediately after gas injection), pH declined and major ions and trace elements fluctuated; at times increasing above baseline concentrations. Changes in the short-term were due to invasion of deep groundwater with elevated total dissolved solids entrained with the upward migration of free phase gas and, reactions that were instigated through the introduction of constituents other than CH4 present in the injected gas (e.g. CO2). At later times, more pronounced aerobic and anaerobic CH4 oxidation led to subtle increases in major ions (e.g. Ca2+, H4SiO4) and trace elements (e.g. As, Cr). Microbial community profiling indicated a persistent perturbation to community composition with a conspicuous ingrowth of taxa implicated in aerobic CH4 oxidation as well anaerobic S, N and Fe species metabolism.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea/química , Metano/análisis , Yacimiento de Petróleo y Gas , Contaminantes Químicos del Agua/análisis , Gas Natural , Ontario
3.
Environ Microbiol Rep ; 10(6): 686-694, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30230256

RESUMEN

We developed an efficient, scalable and inexpensive method for recovering cellular biomass from complex fluid matrices that cannot be processed using conventional filtration methods. The method uses chemical flocculation with iron oxyhydroxides, is capable of recovering greater than 90% of cellular biomass from fluids with more than 103 cells ml-1 , and was validated using both mock communities and field samples. High quality DNA can be readily extracted from iron flocs using standard soil extraction kits. We applied chemical flocculation to fracing fluids from British Columbia, Canada and recovered a diversity of microbial taxa including abundant members of the Epsilon- and Deltaproteobacteria previously recovered from shale gas operations in the United States. Application of chemical flocculation presents new opportunities for scalable time-series monitoring and experimentation on complex fluid matrices including microbial community profiling and shotgun metagenomics over gas production well completion cycles.


Asunto(s)
Biomasa , ADN Bacteriano/aislamiento & purificación , Técnicas Microbiológicas/métodos , Microbiología del Agua , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , ADN Bacteriano/genética , Compuestos Férricos/química , Floculación , Metagenómica , Gas Natural/microbiología , ARN Ribosómico 16S/genética , Reproducibilidad de los Resultados , Aguas Residuales/microbiología
4.
FEMS Microbiol Ecol ; 87(3): 733-45, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24266405

RESUMEN

The role of hydrogen, acetate, and lactate as electron donors for microbial manganese reduction was investigated in manganese-rich marine sediment from Gullmar Fjord (Sweden). Here, manganese reduction accounted for 50% of the anaerobic carbon oxidation at 0-15 cm sediment depth. In anoxic incubations from 0 to 5 cm depth, where manganese reduction dominated completely as terminal electron-accepting process, the combined contribution of acetate and lactate as electron donors for manganese reducers corresponded to < » of the electron flow. The concentrations, ¹4C-radiotracer turnover rates, and contributions to carbon oxidation of acetate and lactate associated with manganese reduction were similar to those found in deeper horizons dominated by concomitant iron and sulfate reduction and sulfate reduction alone, respectively. By contrast, hydrogen concentrations increased considerably with sediment depth, indicating thermodynamic control of the competition between the electron-accepting processes, and hydrogen may have contributed substantially to the > 75% of the electron flow that did not involve acetate and lactate. Alternatively, the oxidation of more complex organic substrates could be involved. Our study provides the first direct evidence of substrate utilization by a natural manganese-reducing community and indicates similar mechanisms of thermodynamic control and competition for electron donors as known from sediments dominated by iron reduction, sulfate reduction, or methanogenesis.


Asunto(s)
Acetatos/química , Sedimentos Geológicos/microbiología , Hidrógeno/química , Ácido Láctico/química , Manganeso/química , Bacterias/metabolismo , Biodegradación Ambiental , Carbono/química , Electrones , Ácidos Grasos Volátiles/química , Sedimentos Geológicos/química , Hierro/química , Oxidación-Reducción , Sulfatos/química , Suecia
5.
Environ Microbiol ; 15(5): 1532-50, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23347091

RESUMEN

While most oxygenic phototrophs harvest light only in the visible range (400-700 nm, VIS), anoxygenic phototrophs can harvest near infrared light (> 700 nm, NIR). To study interactions between the photosynthetic guilds we used microsensors to measure oxygen and gross oxygenic photosynthesis (gOP) in a hypersaline microbial mat under full (VIS + NIR) and VIS illumination. Under normal dissolved inorganic carbon (DIC) concentrations (2 mM), volumetric rates of gOP were reduced up to 65% and areal rates by 16-31% at full compared with VIS illumination. This effect was enhanced (reduction up to 100% in volumetric, 50% in areal rates of gOP) when DIC was lowered to 1 mM, but diminished at 10 mM DIC or lowered pH. In conclusion, under full-light illumination anoxygenic phototrophs are able to reduce the activity of oxygenic phototrophs by efficiently competing for inorganic carbon within the highly oxygenated layer. Anoxygenic photosynthesis, calculated from the difference in gOP under full and VIS illumination, represented between 10% and 40% of the C-fixation. The DIC depletion in the euphotic zone as well as the significant C-fixation by anoxygenic phototrophs in the oxic layer influences the carbon isotopic composition of the mat, which needs to be taken into account when interpreting isotopic biosignals in geological records.


Asunto(s)
Carbono/metabolismo , Microbiología Ambiental , Microbiota/fisiología , Oxígeno/metabolismo , Fotosíntesis/fisiología , Aerobiosis , Anaerobiosis , Concentración de Iones de Hidrógeno , Rayos Infrarrojos , Luz , México , Consumo de Oxígeno , Salinidad
6.
ISME J ; 6(11): 2078-90, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22572639

RESUMEN

Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the prevailing terminal electron-accepting process in anoxic incubations of surface sediments, and even the addition of acetate stimulated neither iron nor sulfate reduction. The three geographically distinct sediments harbored surprisingly similar communities of acetate-utilizing manganese-reducing bacteria: 16S rRNA of members of the genera Colwellia and Arcobacter and of novel genera within the Oceanospirillaceae and Alteromonadales were detected in heavy RNA-SIP fractions from these three sediments. Most probable number (MPN) analysis yielded up to 10(6) acetate-utilizing manganese-reducing cells cm(-3) in Gullmar Fjord sediment. A 16S rRNA gene clone library that was established from the highest MPN dilutions was dominated by sequences of Colwellia and Arcobacter species and members of the Oceanospirillaceae, supporting the obtained RNA-SIP results. In conclusion, these findings strongly suggest that (i) acetate-dependent manganese reduction in manganese oxide-rich sediments is catalyzed by members of taxa (Arcobacter, Colwellia and Oceanospirillaceae) previously not known to possess this physiological function, (ii) similar acetate-utilizing manganese reducers thrive in geographically distinct regions and (iii) the identified manganese reducers differ greatly from the extensively explored iron reducers in marine sediments.


Asunto(s)
Arcobacter/aislamiento & purificación , Gammaproteobacteria/aislamiento & purificación , Gammaproteobacteria/metabolismo , Sedimentos Geológicos/microbiología , Compuestos de Manganeso/metabolismo , Óxidos/metabolismo , Alteromonadaceae/aislamiento & purificación , Alteromonadaceae/metabolismo , Arcobacter/metabolismo , Datos de Secuencia Molecular , Noruega , Oceanospirillaceae/aislamiento & purificación , Oceanospirillaceae/metabolismo , Oxidación-Reducción , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , República de Corea , Suecia
7.
ISME J ; 2(8): 815-29, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18309360

RESUMEN

Anaerobic degradation of organic material generally proceeds through a sequence of steps, including polymer hydrolysis, fermentation and respiration or methanogenesis. The intermediates, such as volatile fatty acids (VFA) or H(2), are generally maintained at low concentration, showing a close coupling of the terminal oxidation to fermentation. We exposed marine sediments to extreme temperature perturbations to study the nature and robustness of this coupling. Bacterial sulfate reduction and its dependence on fermentation were studied experimentally over a broad temperature range of -0.3 to 40 degrees C in sediments from temperate and permanently cold environments. In an Arctic sediment from Svalbard, the apparent optimum temperature for sulfate reduction decreased with prolonged incubation, whereas sulfate reduction rates increased. In a temperate sediment from the North Sea, the apparent optimum temperature was higher and did not change with incubation time. Up to a critical temperature, the concentrations of VFA remained low, <3 microM for acetate and <1 microM for the other VFA, the H(2) concentration showed thermodynamic control by sulfate-reducing bacteria, revealing a close coupling of fermentation and sulfate reduction. Above the critical temperature, the concentrations of VFA and H(2) increased transiently by 100-1000-fold. According to the different in situ temperatures of the samples, the critical temperature was lower for sediments from the Arctic than from the North Sea. The H(2) concentrations decreased again upon prolonged incubation to values typical for sulfate-depleted methanogenic sediments. This suggests that fermentative bacteria and methanogenic archaea in both sediments tolerated higher temperatures than the sulfate-reducing community.


Asunto(s)
Sedimentos Geológicos/microbiología , Sulfatos/metabolismo , Temperatura , Archaea/metabolismo , Bacterias/metabolismo , Ácidos Grasos Volátiles/análisis , Fermentación , Sedimentos Geológicos/química , Hidrógeno/análisis , Metano/metabolismo , Mar del Norte , Oxidación-Reducción , Svalbard , Factores de Tiempo
8.
Arch Environ Contam Toxicol ; 55(3): 372-85, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18273665

RESUMEN

Deposition of dredged harbor sediments in relatively undisturbed ecosystems is often considered a viable option for confinement of pollutants and possible natural attenuation. This study investigated the effects of deposition of heavy-metal-polluted sludge on the microbial diversity of sandy sediments during 12 months of mesocosm incubation. Geochemical analyses showed an initial increase in pore-water metal concentrations, which subsided after 3 months of incubation. No influence of the deposited sediment was observed in denaturing gradient gel electrophoresis (DGGE) profiles of bacterial 16S rRNA genes, whereas a minor, transient impact on the archaeal community was revealed. Phylogenetic analyses of bacterial 16S rRNA clone libraries showed an abundance of members of the Flavobacteriaceae, the alpha- and gamma-Proteobacteria, in both the muddy and the sandy sediments. Despite the finding that some groups of clones were shared between the metal-impacted sandy sediment and the harbor control, comparative analyses showed that the two sediments were significantly different in community composition. Consequences of redeposition of metal-polluted sediment were primarily underlined with cultivation-dependent techniques. Toxicity tests showed that the percentage of Cd- and Cu-tolerant aerobic heterotrophs was highest among isolates from the sandy sediment with metal-polluted mud on top.


Asunto(s)
Farmacorresistencia Bacteriana , Contaminantes Ambientales , Sedimentos Geológicos , Metales Pesados/análisis , Bacterias Aerobias/efectos de los fármacos , Bacterias Aerobias/genética , Bacterias Aerobias/crecimiento & desarrollo , ADN de Archaea/genética , Electroforesis en Gel de Agar , Contaminantes Ambientales/análisis , Contaminantes Ambientales/toxicidad , Variación Genética , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Filogenia , Reacción en Cadena de la Polimerasa , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
9.
Environ Microbiol ; 9(4): 1060-71, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17359276

RESUMEN

The effect of variations in H2 concentrations on methanogenesis from the non-competitive substrates methanol and methylamine (used by methanogens but not by sulfate reducers) was investigated in methanogenic marine sediments. Imposed variations in sulfate concentration and temperature were used to drive systematic variations in pore water H2 concentrations. Specifically, increasing sulfate concentrations and decreasing temperatures both resulted in decreasing H2 concentrations. The ratio of CO2 and CH4 produced from 14C-labelled methylamine and methanol showed a direct correlation with the H2 concentration, independent of the treatment, with lower H2 concentrations resulting in a shift towards CO2. We conclude that this correlation is driven by production of H2 by methylotrophic methanogens, followed by loss to the environment with a magnitude dependent on the extracellular H2 concentrations maintained by hydrogenotrophic methanogens (in the case of the temperature experiment) or sulfate reducers (in the case of the sulfate experiment). Under sulfate-free conditions, the loss of reducing power as H2 flux out of the cell represents a loss of energy for the methylotrophic methanogens while, in the presence of sulfate, it results in a favourable free energy yield. Thus, hydrogen leakage might conceivably be beneficial for methanogens in marine sediments dominated by sulfate reduction. In low-sulfate systems such as methanogenic marine or freshwater sediments it is clearly detrimental--an adverse consequence of possessing a hydrogenase that is subject to externally imposed control by pore water H2 concentrations. H2 leakage in methanogens may explain the apparent exclusion of acetoclastic methanogenesis in sediments dominated by sulfate reduction.


Asunto(s)
Ecosistema , Sedimentos Geológicos/microbiología , Hidrógeno/metabolismo , Metano/metabolismo , Metanol/metabolismo , Metilaminas/metabolismo , Bacterias Anaerobias , Biodegradación Ambiental , Sedimentos Geológicos/química , Hidrógeno/análisis , Oxidación-Reducción
10.
FEMS Microbiol Ecol ; 59(1): 10-22, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17069623

RESUMEN

The contribution of volatile fatty acids (VFA) as e(-)-donors for anaerobic terminal oxidation of organic carbon through iron and sulfate reduction was studied in Arctic fjord sediment. Dissolved inorganic carbon, Fe(2+), VFA concentrations, and sulfate reduction were monitored in slurries from the oxidized (0-2 cm) and the reduced (5-9 cm) zone. In the 0-2 cm layer, 2/3 of the mineralization could be attributed to sulfate reduction and 1/3 to iron reduction. In the 5-9 cm layer, sulfate reduction was the sole mineralization process. Acetate and lactate turnover rates were measured by radiotracer. Inhibition of sulfate reduction with selenate resulted in the accumulation of acetate, propionate, and isobutyrate. The acetate turnover rates determined by radiotracer and accumulation after inhibition were similar. VFA turnover accounted for 21% and 52% of the mineralization through sulfate reduction in the 0-2 and 5-9 cm layer, respectively. Acetate and lactate turnover in the inhibited 0-2 cm slurry was attributed to iron reduction and accounted for 10% and 2% of the iron reduction. Therefore, 88% and 79% of the iron and sulfate reduction in the 0-2 cm layer, respectively, must be fueled by alternative e(-)-donors. The accumulation of VFA in the selenate-inhibited 0-2 cm slurry did not enhance iron reduction, indicating that iron reducers were not limited by VFA availability.


Asunto(s)
Ácidos Grasos Volátiles/metabolismo , Sedimentos Geológicos/microbiología , Hierro/metabolismo , Sulfatos/metabolismo , Acetatos/metabolismo , Butiratos/metabolismo , Sedimentos Geológicos/química , Ácido Láctico/metabolismo , Oxidación-Reducción , Propionatos/metabolismo , Ácido Selénico , Compuestos de Selenio/química , Microbiología del Suelo , Svalbard
11.
FEMS Microbiol Ecol ; 44(2): 175-89, 2003 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19719635

RESUMEN

The benthic microbial mat community of the only permanent hypersaline natural inland lake of Western Europe, 'La Salada de Chiprana', northeastern Spain, was structurally and functionally analyzed. The ionic composition of the lake water is characterized by high concentrations of magnesium and sulfate, which were respectively 0.35 and 0.5 M at the time of sampling while the total salinity was 78 g l(-1). Community composition was analyzed by microscopy, high-performance liquid chromatography (HPLC) pigment analyses and by studying culturable bacteria from different functional groups. Therefore, denaturing gradient gel electrophoresis (DGGE) was applied on most probable number (MPN) dilution cultures. Microscopy revealed that a thin layer of Chloroflexus-like bacteria overlaid various cyanobacteria-dominated layers each characterized by different morphotypes. DGGE analysis of MPN dilution cultures from distinct mat layers showed that various phylotypes of anoxygenic phototrophic, aerobic heterotrophic, colorless sulfur-, and sulfate-reducing bacteria were present. The mats were furthermore functionally studied and attention was focussed on the relationship between oxygenic primary production and the flow of carbon through the microbial community. Microsensor techniques, porewater and sediment photopigment analysis were applied in order to estimate oxygenic photosynthetic rates, daily dynamics of (in)organic carbon porewater concentration and migration behavior of phototrophs. Chiprana microbial mats produced dissolved organic carbon (DOC) both during the day and night. It was estimated that 14% of the mats gross photosynthetic production and 49% of the mats net photosynthetic production diffused out of the mat in the form of low molecular mass fatty acids, although these compounds made up only 2% of the total DOC pool. The high flux of dissolved fatty acids from the microbial mat to the water column may explain why in this system Chloroflexus-like bacteria proliferate on top of the cyanobacterial layers since these photoheterotrophic bacteria grow preferably on organic phototrophic exudates. Furthermore it may also explain why high numbers of viable sulfate-reducing bacteria were found in the fully oxygenated sediment surface layers. These organisms apparently do not have to compete with aerobic heterotrophic community members due to the ample availability of organic substrates. Moreover, the high production of DOC strongly indicates that the mat community was nutrient limited in its growth. Photopigment analysis revealed furthermore that chlorophyll a (Chla) and three of its allomeres had a complementary depth distribution what suggests that the Chla allomeres are functional adaptations to differences in light quality and/or quantity and may be species specific.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...