Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(21): e202402316, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38494442

RESUMEN

In the ever-growing demand for sustainable ways to produce high-value small molecules, biocatalysis has come to the forefront of greener routes to these chemicals. As such, the need to constantly find and optimise suitable biocatalysts for specific transformations has never been greater. Metagenome mining has been shown to rapidly expand the toolkit of promiscuous enzymes needed for new transformations, without requiring protein engineering steps. If protein engineering is needed, the metagenomic candidate can often provide a better starting point for engineering than a previously discovered enzyme on the open database or from literature, for instance. In this review, we highlight where metagenomics has made substantial impact on the area of biocatalysis in recent years. We review the discovery of enzymes in previously unexplored or 'hidden' sequence space, leading to the characterisation of enzymes with enhanced properties that originate from natural selection pressures in native environments.


Asunto(s)
Biocatálisis , Metagenómica , Enzimas/metabolismo , Enzimas/química , Enzimas/genética , Ingeniería de Proteínas
2.
J Am Chem Soc ; 146(7): 5005-5010, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38329236

RESUMEN

Radical hydrofunctionalizations of electronically unbiased dienes are challenging to render regioselective, because the products are nearly identical in energy. Here, we report two engineered FMN-dependent "ene"-reductases (EREDs) that catalyze regiodivergent hydroalkylations of cyclic and linear dienes. While previous studies focused exclusively on the stereoselectivity of alkene hydroalkylation, this work highlights that EREDs can control the regioselectivity of hydrogen atom transfer, providing a method for selectively preparing constitutional isomers that would be challenging to prepare using traditional synthetic methods. Engineering the ERED from Gluconabacter sp. (GluER) furnished a variant that favors the γ,δ-unsaturated ketone, while an engineered variant from a commercial ERED panel favors the δ,ε-unsaturated ketone. The effect of beneficial mutations has been investigated using substrate docking studies and the mechanism probed by isotope labeling experiments. A variety of α-bromo ketones can be coupled with cyclic and linear dienes. These interesting building blocks can also be further modified to generate difficult-to-access heterocyclic compounds.


Asunto(s)
Oxidorreductasas , Polienos , Biocatálisis , Oxidorreductasas/química , Catálisis , Isomerismo , Cetonas/química
3.
Biosystems ; 236: 105105, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38160995

RESUMEN

Enzymes are being increasingly exploited for their potential as industrial biocatalysts. Establishing a portfolio of useful biocatalysts from large and diverse protein family is challenging and a systematic method for candidate selection promises to aid in this task. Moreover, accurate enzyme functional annotation can only be confidently guaranteed through experimental characterisation in the laboratory. The selection of catalytically diverse enzyme panels for experimental characterisation is also an important step for shedding light on the currently unannotated proteins in enzyme families. Current selection methods often lack efficiency and scalability, and are usually non-systematic. We present a novel algorithm for the automatic selection of subsets from enzyme families. A tabu search algorithm solving the maximum diversity problem for sequence identity was designed and implemented, and applied to three diverse enzyme families. We show that this approach automatically selects panels of enzymes that contain high richness and relative abundance of the known catalytic functions, and outperforms other methods such as k-medoids.


Asunto(s)
Algoritmos , Proteínas , Proteínas/genética , Proteínas/metabolismo , Catálisis
4.
J Am Chem Soc ; 145(40): 22041-22046, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37782882

RESUMEN

Novel building blocks are in constant demand during the search for innovative bioactive small molecule therapeutics by enabling the construction of structure-activity-property-toxicology relationships. Complex chiral molecules containing multiple stereocenters are an important component in compound library expansion but can be difficult to access by traditional organic synthesis. Herein, we report a biocatalytic process to access a specific diastereomer of a chiral amine building block used in drug discovery. A reductive aminase (RedAm) was engineered following a structure-guided mutagenesis strategy to produce the desired isomer. The engineered RedAm (IR-09 W204R) was able to generate the (S,S,S)-isomer 3 in 45% conversion and 95% ee from the racemic ketone 2. Subsequent palladium-catalyzed deallylation of 3 yielded the target primary amine 4 in a 73% yield. This engineered biocatalyst was used at preparative scale and represents a potential starting point for further engineering and process development.


Asunto(s)
Aminas , Diseño de Fármacos , Biocatálisis , Estereoisomerismo
5.
Metabolites ; 13(9)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37755290

RESUMEN

Escherichia coli is an invaluable research tool for many fields of biology, in particular for the production of recombinant enzymes. However, the activity of many such recombinant enzymes cannot be determined using standard biochemical assays, as often, the relevant substrates are not known, or the products produced are not detectable. Today, the biochemical footprints of such unknown enzyme activities can be revealed via the analysis of the metabolomes of the recombinant E. coli clones in which they are expressed, using sensitive technologies such as mass spectrometry. However, before any metabolites can be identified, it is necessary to achieve as high a coverage of the potential metabolites present within E. coli as possible. We have therefore analyzed a wide range of different extraction methods against the cell free extracts of various recombinant E. coli clones. The results were analyzed to determine the minimum number of extractions that achieved high recovery and coverage of metabolites. Two methods were selected for further analysis due to their ability to produce not only high numbers of ions, but also wide mass coverage and a high degree of complementarity. One extraction method uses acetonitrile and water, in a 4:1 ratio, which is then dried down and reconstituted in the chromatography running buffer prior to injection onto the chromatography column, and the other extraction method uses a combination of methanol, water and chloroform, in a 3:1:1 ratio, which is injected directly onto the chromatography column. These two extraction methods were shown to be complementary to each other, as regards the respective metabolites extracted, and to cover a large range of metabolites.

6.
J Am Chem Soc ; 144(46): 21088-21095, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36350999

RESUMEN

The development of efficient and sustainable methods for the synthesis of nitrogen heterocycles is an important goal for the chemical industry. In particular, substituted chiral piperidines are prominent targets due to their prevalence in medicinally relevant compounds and their precursors. A potential biocatalytic approach to the synthesis of this privileged scaffold would be the asymmetric dearomatization of readily assembled activated pyridines. However, nature is yet to yield a suitable biocatalyst specifically for this reaction. Here, by combining chemical synthesis and biocatalysis, we present a general chemo-enzymatic approach for the asymmetric dearomatization of activated pyridines for the preparation of substituted piperidines with precise stereochemistry. The key step involves a stereoselective one-pot amine oxidase/ene imine reductase cascade to convert N-substituted tetrahydropyridines to stereo-defined 3- and 3,4-substituted piperidines. This chemo-enzymatic approach has proved useful for key transformations in the syntheses of antipsychotic drugs Preclamol and OSU-6162, as well as for the preparation of two important intermediates in synthetic routes of the ovarian cancer monotherapeutic Niraparib.


Asunto(s)
Piperidinas , Piridinas , Piridinas/química , Estereoisomerismo , Catálisis , Piperidinas/química , Iminas/química
7.
Angew Chem Int Ed Engl ; 61(31): e202202363, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35576553

RESUMEN

Chiral ß-hydroxysulfides are an important class of organic compounds which find broad application in organic and pharmaceutical chemistry. Herein we describe the development of novel biocatalytic and chemoenzymatic methods for the enantioselective synthesis of ß-hydroxysulfides by exploiting ketoreductase (KRED) enzymes. Four KREDs were discovered from a pool of 384 enzymes identified and isolated through a metagenomic approach. KRED311 and KRED349 catalysed the synthesis of ß-hydroxysulfides bearing a stereocentre at the C-O bond with opposite absolute configurations and excellent ee values by novel chemoenzymatic and biocatalytic-chemical-biocatalytic (bio-chem-bio) cascades starting from commercially available thiophenols/thiols and α-haloketones/alcohols. KRED253 and KRED384 catalysed the enantioselective synthesis of ß-hydroxysulfides bearing a stereocentre at the C-S bond with opposite enantioselectivities by dynamic kinetic resolution (DKR) of racemic α-thioaldehydes.


Asunto(s)
Alcoholes , Alcoholes/química , Biocatálisis , Catálisis , Cinética , Estereoisomerismo
8.
Nature ; 604(7904): 86-91, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35388195

RESUMEN

Chiral amine diastereomers are ubiquitous in pharmaceuticals and agrochemicals1, yet their preparation often relies on low-efficiency multi-step synthesis2. These valuable compounds must be manufactured asymmetrically, as their biochemical properties can differ based on the chirality of the molecule. Herein we characterize a multifunctional biocatalyst for amine synthesis, which operates using a mechanism that is, to our knowledge, previously unreported. This enzyme (EneIRED), identified within a metagenomic imine reductase (IRED) collection3 and originating from an unclassified Pseudomonas species, possesses an unusual active site architecture that facilitates amine-activated conjugate alkene reduction followed by reductive amination. This enzyme can couple a broad selection of α,ß-unsaturated carbonyls with amines for the efficient preparation of chiral amine diastereomers bearing up to three stereocentres. Mechanistic and structural studies have been carried out to delineate the order of individual steps catalysed by EneIRED, which have led to a proposal for the overall catalytic cycle. This work shows that the IRED family can serve as a platform for facilitating the discovery of further enzymatic activities for application in synthetic biology and organic synthesis.


Asunto(s)
Aminas , Oxidorreductasas , Aminación , Aminas/química , Biocatálisis , Iminas/química , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Estereoisomerismo
9.
ChemSusChem ; 15(9): e202102750, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35315974

RESUMEN

In the last two decades, several PET-degrading enzymes from already known microorganisms or metagenomic sources have been discovered to face the growing environmental concern of polyethylene terephthalate (PET) accumulation. However, there is a limited number of high-throughput screening protocols for PET-hydrolyzing activity that avoid the use of surrogate substrates. Herein, a microplate fluorescence screening assay was described. It was based on the coupled activity of ketoreductases (KREDs) and diaphorase to release resorufin in the presence of the products of PET degradation. Six KREDs were identified in a commercial panel that were able to use the PET building block, ethylene glycol, as substrate. The most efficient KRED, KRED61, was combined with the diaphorase from Clostridium kluyveri to monitor the PET degradation reaction catalyzed by the thermostable variant of the cutinase-type polyesterase from Saccharomonospora viridis AHK190. The PET degradation products were measured both fluorimetrically and by HPLC, with excellent correlation between both methods.


Asunto(s)
Tereftalatos Polietilenos , Tereftalatos Polietilenos/química
10.
J Am Chem Soc ; 144(9): 3761-3765, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35224970

RESUMEN

The Covid-19 pandemic highlights the urgent need for cost-effective processes to rapidly manufacture antiviral drugs at scale. Here we report a concise biocatalytic process for Molnupiravir, a nucleoside analogue recently approved as an orally available treatment for SARS-CoV-2. Key to the success of this process was the development of an efficient biocatalyst for the production of N-hydroxy-cytidine through evolutionary adaption of the hydrolytic enzyme cytidine deaminase. This engineered biocatalyst performs >85 000 turnovers in less than 3 h, operates at 180 g/L substrate loading, and benefits from in situ crystallization of the N-hydroxy-cytidine product (85% yield), which can be converted to Molnupiravir by a selective 5'-acylation using Novozym 435.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Citidina Desaminasa/metabolismo , Citidina/análogos & derivados , SARS-CoV-2 , Biocatálisis , Citidina/biosíntesis , Citidina/metabolismo , Citidina Desaminasa/genética , Escherichia coli/enzimología , Escherichia coli/genética , Hidroxilaminas , Ingeniería Metabólica , Ingeniería de Proteínas , Uridina/metabolismo
11.
Angew Chem Int Ed Engl ; 60(46): 24456-24460, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34478225

RESUMEN

2-Aminotetralin and 3-aminochroman derivatives are key structural motifs present in a wide range of pharmaceutically important molecules. Herein, we report an effective biocatalytic approach towards these molecules through the enantioselective reductive coupling of 2-tetralones and 3-chromanones with a diverse range of primary amine partners. Metagenomic imine reductases (IREDs) were employed as the biocatalysts, obtaining high yields and enantiocomplementary selectivity for >15 examples at preparative scale, including the precursors to Ebalzotan, Robalzotan, Alnespirone and 5-OH-DPAT. We also present a convergent chemo-enzymatic total synthesis of the Parkinson's disease therapy Rotigotine in 63 % overall yield and 92 % ee.


Asunto(s)
Cromanos/metabolismo , Oxidorreductasas/metabolismo , Tetrahidronaftalenos/metabolismo , Aminación , Aminas/química , Aminas/metabolismo , Biocatálisis , Cromanos/química , Oxidación-Reducción , Estereoisomerismo , Tetrahidronaftalenos/química
12.
Nat Chem ; 13(2): 140-148, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33380742

RESUMEN

Finding faster and simpler ways to screen protein sequence space to enable the identification of new biocatalysts for asymmetric synthesis remains both a challenge and a rate-limiting step in enzyme discovery. Biocatalytic strategies for the synthesis of chiral amines are increasingly attractive and include enzymatic asymmetric reductive amination, which offers an efficient route to many of these high-value compounds. Here we report the discovery of over 300 new imine reductases and the production of a large (384 enzymes) and sequence-diverse panel of imine reductases available for screening. We also report the development of a facile high-throughput screen to interrogate their activity. Through this approach we identified imine reductase biocatalysts capable of accepting structurally demanding ketones and amines, which include the preparative synthesis of N-substituted ß-amino ester derivatives via a dynamic kinetic resolution process, with excellent yields and stereochemical purities.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Oxidorreductasas/aislamiento & purificación , Aminación/efectos de los fármacos , Aminas/química , Biocatálisis , Iminas/metabolismo , Cetonas/química , Oxidorreductasas/metabolismo , Estereoisomerismo
13.
Adv Protein Chem Struct Biol ; 122: 289-320, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32951814

RESUMEN

Cytochromes P450 (P450s) are a large superfamily of heme-containing monooxygenases. P450s are found in all Kingdoms of life and exhibit incredible diversity, both at sequence level and also on a biochemical basis. In the majority of cases, P450s can be assigned into one of ten classes based on their associated redox partners, domain architecture and cellular localization. Prokaryotic P450s now represent a large diverse collection of annotated/known enzymes, of which many have great potential biocatalytic potential. The self-sufficient P450 classes (Class VII/VIII) have been explored significantly over the past decade, with many annotated and biochemically characterized members. It is clear that the prokaryotic P450 world is expanding rapidly, as the number of published genomes and metagenome studies increases, and more P450 families are identified and annotated (CYP families).


Asunto(s)
Archaea , Bacterias , Sistema Enzimático del Citocromo P-450 , Genoma Arqueal , Genoma Bacteriano , Archaea/enzimología , Archaea/genética , Bacterias/enzimología , Bacterias/genética , Sistema Enzimático del Citocromo P-450/clasificación , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Anotación de Secuencia Molecular
14.
Chemistry ; 26(46): 10422-10426, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32239730

RESUMEN

The enantioselective synthesis of α-thiocarboxylic acids by biocatalytic dynamic kinetic resolution (DKR) of nitrile precursors exploiting nitrilase enzymes is described. A panel of 35 nitrilase biocatalysts were screened and enzymes Nit27 and Nit34 were found to catalyse the DKR of racemic α-thionitriles under mild conditions, affording the corresponding carboxylic acids with high conversions and good-to-excellent ee. The ammonia produced in situ during the biocatalytic transformation favours the racemization of the nitrile enantiomers and, in turn, the DKR without the need of any external additive base.

15.
FEBS J ; 286(1): 184-204, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30414312

RESUMEN

Enzymes are attractive tools for synthetic applications. To be viable for industrial use, enzymes need sufficient stability towards the desired reaction conditions such as high substrate and cosolvent concentration, non-neutral pH and elevated temperatures. Thermal stability is an attractive feature not only because it allows for protein purification by thermal treatment and higher process temperatures but also due to the associated higher stability against other destabilising factors. Therefore, high-throughput screening (HTS) methods are desirable for the identification of thermostable biocatalysts by discovery from nature or by protein engineering but current methods have low throughput and require time-demanding purification of protein samples. We found that nanoscale differential scanning fluorimetry (nanoDSF) is a valuable tool to rapidly and reliably determine melting points of native proteins. To avoid intrinsic problems posed by crude protein extracts, hypotonic extraction of overexpressed protein from bacterial host cells resulted in higher sample quality and accurate manual determination of several hundred melting temperatures per day. We have probed the use of nanoDSF for HTS of a phylogenetically diverse aldolase library to identify novel thermostable enzymes from metagenomic sources and for the rapid measurements of variants from saturation mutagenesis. The feasibility of nanoDSF for the screening of synthetic reaction conditions was proved by studies of cosolvent tolerance, which showed protein melting temperature to decrease linearly with increasing cosolvent concentration for all combinations of six enzymes and eight water-miscible cosolvents investigated, and of substrate affinity, which showed stabilisation of hexokinase by sugars in the absence of ATP cofactor. ENZYMES: Alcohol dehydrogenase (NADP+ ) (EC 1.1.1.2), transketolase (EC 2.2.1.1), hexokinase (EC 2.7.1.1), 2-deoxyribose-5-phosphate aldolase (EC 4.1.2.4), fructose-6-phosphate aldolase (EC 4.1.2.n).


Asunto(s)
Aldehído-Liasas/metabolismo , Escherichia coli/enzimología , Fluorometría/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Nanotecnología/métodos , Ingeniería de Proteínas/métodos , Temperatura , Aldehído-Liasas/química , Aldehído-Liasas/genética , Biotecnología , Estabilidad de Enzimas , Biblioteca de Genes , Hidrólisis , Metagenómica , Mutagénesis Sitio-Dirigida , Mutación , Ribosamonofosfatos , Especificidad por Sustrato
16.
J Am Chem Soc ; 140(51): 17872-17877, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30521324

RESUMEN

Enantioenriched 2-aryl azepanes and 2-arylbenzazepines were generated biocatalytically by asymmetric reductive amination using imine reductases or by deracemization using monoamine oxidases. The amines were converted to the corresponding N'-aryl ureas, which rearranged on treatment with base with stereospecific transfer of the aryl substituent to the 2-position of the heterocycle via a configurationally stable benzyllithium intermediate. The products are previously inaccessible enantioenriched 2,2-disubstituted azepanes and benzazepines.


Asunto(s)
Azepinas/síntesis química , Biocatálisis , Iminas/química , Litio/química , Monoaminooxidasa/química , Compuestos Organometálicos/química , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/química , Estereoisomerismo
17.
Immunology ; 143(3): 331-40, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24476318

RESUMEN

Systemic sclerosis is an autoimmune idiopathic connective tissue disease, characterized by vasculopathy, inflammation and fibrosis. There appears to be a link between inflammation and fibrosis, although the exact nature of the relationship is unknown. Serum amyloid A (SAA) is an acute-phase protein that is elevated up to 1000-fold in times of infection or inflammation. This acute-phase reactant, as well as being a marker of inflammation, may initiate signals in a cytokine-like manner, possibly through toll-like receptors (TLRs) promoting inflammation. This study addressed the role of SAA in initiating interleukin-6 (IL-6) production in dermal fibroblasts and the role of TLR2 in this system. We show that SAA induces IL-6 secretion in healthy dermal fibroblasts and that blockade of TLR2 with a neutralizing antibody to TLR2 or specific small interfering RNA attenuated the SAA-induced IL-6 secretion and that this was also mediated through the TLR adaptor protein IL-1 receptor-associated kinase 4. The effect is nuclear factor-κB-mediated because blockade of nuclear factor-κB reduced the induction. We also demonstrate that dermal fibroblasts express TLR2; this is functional and over-expressed in the fibroblasts of patients with systemic sclerosis. Taken together these data suggest that SAA is a danger signal that initiates IL-6 signalling in systemic sclerosis via enhanced TLR2 signalling.


Asunto(s)
Fibroblastos/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Interleucina-6/metabolismo , FN-kappa B/metabolismo , Proteína Amiloide A Sérica/metabolismo , Piel/metabolismo , Receptor Toll-Like 2/metabolismo , Línea Celular , Relación Dosis-Respuesta a Droga , Fibroblastos/efectos de los fármacos , Expresión Génica , Humanos , Esclerodermia Sistémica/genética , Esclerodermia Sistémica/metabolismo , Proteína Amiloide A Sérica/farmacología , Piel/patología , Receptor Toll-Like 2/genética
18.
Expert Rev Mol Med ; 15: e9, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-23985302

RESUMEN

Accumulative evidence demonstrates the crucial role of evolutionary conserved Toll-like receptors (TLRs) in identifying microbial or viral compounds. TLRs are also able to recognise endogenous molecules which are released upon cell damage or stress and have been shown to play a key role in numerous autoimmune diseases including systemic sclerosis (SSc). A classic feature of SSc, is vascular injury manifested as Raynaud's phenomenon and ischaemia of the skin, resulting in the release of endogenous TLR ligands during inflammation and local tissue damage. These locally released TLR ligands bind TLRs possibly complexed to autoantibodies, and initiate intracellular signalling pathways and may be one of the mechanisms that initiate and drive autoimmunity and subsequent fibrosis. Activation of the immune system results in interferon (IFN) sensitive gene transcription. There is also an IFN gene signature in SSc peripheral blood. TLRs may represent the link between immune activation, common in SSc, and tissue fibrosis. Therefore, a better understanding of the mechanisms of TLR-mediated pathogenesis and therapies targeting individual TLRs, may provide a more specific approach of treating multi-systemic autoimmune diseases. This review aims to integrate the current knowledge of TLR function in the autoimmune disorders with particular emphasis on SSc. We suggest the TLR system as a new therapeutic target.


Asunto(s)
Esclerodermia Sistémica/inmunología , Receptores Toll-Like/metabolismo , Animales , Autoanticuerpos/inmunología , Autoinmunidad , Humanos , Esclerodermia Sistémica/etiología , Esclerodermia Sistémica/metabolismo , Esclerodermia Sistémica/terapia , Transducción de Señal , Receptores Toll-Like/inmunología , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA