Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
bioRxiv ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38746371

RESUMEN

Clinical research emphasizes the implementation of rigorous and reproducible study designs that rely on between-group matching or controlling for sources of biological variation such as subject's sex and age. However, corrections for body size (i.e. height and weight) are mostly lacking in clinical neuroimaging designs. This study investigates the importance of body size parameters in their relationship with spinal cord (SC) and brain magnetic resonance imaging (MRI) metrics. Data were derived from a cosmopolitan population of 267 healthy human adults (age 30.1±6.6 years old, 125 females). We show that body height correlated strongly or moderately with brain gray matter (GM) volume, cortical GM volume, total cerebellar volume, brainstem volume, and cross-sectional area (CSA) of cervical SC white matter (CSA-WM; 0.44≤r≤0.62). In comparison, age correlated weakly with cortical GM volume, precentral GM volume, and cortical thickness (-0.21≥r≥-0.27). Body weight correlated weakly with magnetization transfer ratio in the SC WM, dorsal columns, and lateral corticospinal tracts (-0.20≥r≥-0.23). Body weight further correlated weakly with the mean diffusivity derived from diffusion tensor imaging (DTI) in SC WM (r=-0.20) and dorsal columns (-0.21), but only in males. CSA-WM correlated strongly or moderately with brain volumes (0.39≤r≤0.64), and weakly with precentral gyrus thickness and DTI-based fractional anisotropy in SC dorsal columns and SC lateral corticospinal tracts (-0.22≥r≥-0.25). Linear mixture of sex and age explained 26±10% of data variance in brain volumetry and SC CSA. The amount of explained variance increased at 33±11% when body height was added into the mixture model. Age itself explained only 2±2% of such variance. In conclusion, body size is a significant biological variable. Along with sex and age, body size should therefore be included as a mandatory variable in the design of clinical neuroimaging studies examining SC and brain structure.

2.
Hum Brain Mapp ; 44(18): 6471-6483, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37873743

RESUMEN

Force generation is a crucial element of dexterity and a highly relevant skill of the human motor system. How cerebral and spinal components interact and how spinal activation is associated with the activity in the cerebral primary motor and premotor areas is poorly understood. Here, we conducted combined cortico-spinal functional magnetic resonance imaging during a simple visually guided isometric force generation task in 20 healthy young subjects. Activation was localized in the right cervical spinal cord and left primary motor and premotor areas. The main finding is that spinal activation was negatively correlated with ventral premotor cortex activation. Spinal activation was furthermore significantly correlated with primary motor cortex activation, while increasing target forces led to an increase in the amount of activation. These data indicate that human premotor areas such as the ventral premotor cortex might be functionally connected to the lower cervical spinal cord contributing to distal upper limb functions, a finding that extends our understanding of human motor function beyond the animal literature.


Asunto(s)
Corteza Motora , Animales , Humanos , Corteza Motora/diagnóstico por imagen , Corteza Motora/fisiología , Imagen por Resonancia Magnética , Médula Espinal/diagnóstico por imagen
3.
Neuroimage ; 275: 120152, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37142169

RESUMEN

The investigation of spontaneous fluctuations of the blood-oxygen-level-dependent (BOLD) signal has recently been extended from the brain to the spinal cord, where it has stimulated interest from a clinical perspective. A number of resting-state functional magnetic resonance imaging (fMRI) studies have demonstrated robust functional connectivity between the time series of BOLD fluctuations in bilateral dorsal horns and between those in bilateral ventral horns, in line with the functional neuroanatomy of the spinal cord. A necessary step prior to extension to clinical studies is assessing the reliability of such resting-state signals, which we aimed to do here in a group of 45 healthy young adults at the clinically prevalent field strength of 3T. When investigating connectivity in the entire cervical spinal cord, we observed fair to good reliability for dorsal-dorsal and ventral-ventral connectivity, whereas reliability was poor for within- and between-hemicord dorsal-ventral connectivity. Considering how prone spinal cord fMRI is to noise, we extensively investigated the impact of distinct noise sources and made two crucial observations: removal of physiological noise led to a reduction in functional connectivity strength and reliability - due to the removal of stable and participant-specific noise patterns - whereas removal of thermal noise considerably increased the detectability of functional connectivity without a clear influence on reliability. Finally, we also assessed connectivity within spinal cord segments and observed that while the pattern of connectivity was similar to that of whole cervical cord, reliability at the level of single segments was consistently poor. Taken together, our results demonstrate the presence of reliable resting-state functional connectivity in the human spinal cord even after thoroughly accounting for physiological and thermal noise, but at the same time urge caution if focal changes in connectivity (e.g. due to segmental lesions) are to be studied, especially in a longitudinal manner.


Asunto(s)
Médula Cervical , Médula Espinal , Adulto Joven , Animales , Humanos , Reproducibilidad de los Resultados , Médula Espinal/diagnóstico por imagen , Médula Espinal/fisiología , Médula Cervical/fisiología , Encéfalo , Asta Dorsal de la Médula Espinal , Imagen por Resonancia Magnética/métodos
4.
Magn Reson Med ; 90(2): 633-642, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37093986

RESUMEN

PURPOSE: To implement slice-specific z-shim in simultaneous multislice (SMS) imaging in order to minimize signal losses in slice-accelerated T2 *-weighted acquisitions, such as for spinal cord functional neuroimaging. METHODS: The RF envelopes of the individual slice bands are temporally shifted on the plateau of the slice-selection gradient pulse before being combined to the multiband RF envelope. Thus, optimum z-shims can be realized for each slice of an SMS excitation, which is in contrast to conventional z-shimming. EPI with 2-fold SMS acceleration was performed on a 3T whole-body MR system in phantoms and the cervical spinal cord of healthy volunteers (i) without z-shim, (ii) with conventional z-shim using the average value of the slices of the SMS excitation, and (iii) with optimal, slice-specific z-shims for each slice using envelope shifts. RESULTS: Phantom experiments demonstrate the equivalence of the envelope shift and conventional z-shimming for non-SMS excitations. With SMS, the best image quality is obtained with "mixed" z-shim, where only the z-shim differences of the slices of an SMS excitation are implemented by an envelope shift while their mean z-shim is applied conventionally with a gradient pulse after the echoes acquired for N/2 ghost correction. In phantoms and in vivo, this setup outperforms the approaches without slice-specific z-shim with respect to signal amplitude and temporal SNR at the expense of slight TE differences (<1 ms) between the slices. CONCLUSION: With RF envelope shifts, slice-specific z-shims can be combined with SMS imaging, which could improve slice-accelerated functional neuroimaging in the spinal cord.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Aumento de la Imagen/métodos , Fantasmas de Imagen , Encéfalo/diagnóstico por imagen , Imagen Eco-Planar/métodos
5.
Neuroimage ; 268: 119868, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36646161

RESUMEN

Cortico-spinal fMRI acquisitions aim to investigate direct interactions between brain and spinal cord, e.g. during motor output or pain processing, by covering both regions in a single measurement. Due to their large distance and location in the body, a dynamic shim update of constant and linear shim terms is required when using echo-planar imaging (EPI) to achieve reasonable image quality in both target regions. A previously presented approach with region-wise shim settings is based on a standard single-region shim algorithm and suffers from (i) non-optimal shim settings because it combines linear and second-order shim terms optimized for different volumes, and (ii) significant user interactions making it rather cumbersome, time consuming, and error-prone. Here, a dedicated ("CoSpi") shim algorithm for cortico-spinal fMRI is presented that performs joint optimization of static second-order shim terms and one set of linear and constant shim terms for each region in a single run and with minimal user interaction. Field map and T2*-weighted EPI measurements were performed on a clinical 3 T whole-body MR system in water phantoms and five healthy volunteers using the conventional region-wise and CoSpi shim settings as well as "gold standard" shim settings optimized for one of the target regions only. With CoSpi shim settings, (i) overall field inhomogeneity was reduced by about 65% / 75% (brain / spinal cord volume) compared to the conventional region-wise approach and in vivo was within 5% of the values obtained with the single-volume shim settings, (ii) geometric distortions derived from voxel displacement maps were reduced on average by about 35% / 70%, (iii) the temporal SNR determined from an EPI time series that may reflect the impact of through-slice dephasing, was increased by about 17% / 10%, and (iv) the variation of the mean field between slices, a measure targeting the predisposition to insufficient fat saturation and GRAPPA-related ghosting artifacts, was reduced by about 90% / 45%. Thus, the presented algorithm not only speeds up and simplifies the shim procedure considerably, but also provides a better field homogeneity and image quality, which both could help to significantly improve the applicability of cortico-spinal fMRI.


Asunto(s)
Encéfalo , Procesamiento de Imagen Asistido por Computador , Humanos , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Imagen Eco-Planar/métodos , Algoritmos
6.
bioRxiv ; 2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38187724

RESUMEN

The application of functional magnetic resonance imaging (fMRI) to the human spinal cord is still a relatively small field of research and faces many challenges. Here we aimed to probe the limitations of task-based spinal fMRI at 3T by investigating the reliability of spinal cord blood oxygen level dependent (BOLD) responses to repeated nociceptive stimulation across two consecutive days in 40 healthy volunteers. We assessed the test-retest reliability of subjective ratings, autonomic responses, and spinal cord BOLD responses to short heat pain stimuli (1s duration) using the intraclass correlation coefficient (ICC). At the group level, we observed robust autonomic responses as well as spatially specific spinal cord BOLD responses at the expected location, but no spatial overlap in BOLD response patterns across days. While autonomic indicators of pain processing showed good-to-excellent reliability, both ß-estimates and z-scores of task-related BOLD responses showed poor reliability across days in the target region (gray matter of the ipsilateral dorsal horn). When taking into account the sensitivity of gradient-echo echo planar imaging (GE-EPI) to draining vein signals by including the venous plexus in the analysis, we observed BOLD responses with good reliability across days. Taken together, these results demonstrate that heat pain stimuli as short as one second are able to evoke a robust and spatially specific BOLD response, which is however strongly variable within participants across time, resulting in low reliability in the dorsal horn gray matter. Further improvements in data acquisition and analysis techniques are thus necessary before event-related spinal cord fMRI as used here can be reliably employed in longitudinal designs or clinical settings.

7.
Hum Brain Mapp ; 43(18): 5389-5407, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-35938527

RESUMEN

Functional magnetic resonance imaging (fMRI) of the human spinal cord faces many challenges, such as signal loss due to local magnetic field inhomogeneities. This issue can be addressed with slice-specific z-shimming, which compensates for the dephasing effect of the inhomogeneities using a slice-specific gradient pulse. Here, we aim to address outstanding issues regarding this technique by evaluating its effects on several aspects that are directly relevant for spinal fMRI and by developing two automated procedures in order to improve upon the time-consuming and subjective nature of manual selection of z-shims: one procedure finds the z-shim that maximizes signal intensity in each slice of an EPI reference-scan and the other finds the through-slice field inhomogeneity for each EPI-slice in field map data and calculates the required compensation gradient moment. We demonstrate that the beneficial effects of z-shimming are apparent across different echo times, hold true for both the dorsal and ventral horn, and are also apparent in the temporal signal-to-noise ratio (tSNR) of EPI time-series data. Both of our automated approaches were faster than the manual approach, lead to significant improvements in gray matter tSNR compared to no z-shimming and resulted in beneficial effects that were stable across time. While the field-map-based approach performed slightly worse than the manual approach, the EPI-based approach performed as well as the manual one and was furthermore validated on an external corticospinal data-set (N > 100). Together, automated z-shimming may improve the data quality of future spinal fMRI studies and lead to increased reproducibility in longitudinal studies.


Asunto(s)
Artefactos , Imagen Eco-Planar , Humanos , Imagen Eco-Planar/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos , Médula Espinal/diagnóstico por imagen , Encéfalo/diagnóstico por imagen
8.
Spinal Cord ; 60(5): 457-464, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35379960

RESUMEN

STUDY DESIGN: This investigation was a cohort study that included: 36 typically developing (TD) children and 19 children with spinal cord lesions who underwent spinal cord MRI. OBJECTIVES: To investigate diffusion tensor imaging (DTI) cervical and thoracic spinal cord changes in pediatric patients that have clinically traumatic and non-traumatic spinal cord injury (SCI) without MR (SCIWOMR) abnormalities. SETTING: Thomas Jefferson University, Temple University, Shriners Hospitals for Children all in Philadelphia, USA. METHODS: 36 TD children and 19 children with spinal cord lesions that represent either a chronic traumatic acquired SCI or chronic non-traumatic SCI (≥6 months post injury), age range, 6-16 years who underwent cervical and thoracic spinal cord MRI in 2014-2017. Additionally DTI was correlated to clinical American Spinal Injury Association Impairment Scale (AIS). RESULTS: Both SCIWOMR and MRI positive (+) groups showed abnormal FA and RD DTI values in the adjacent MRI-normal appearing segments of cephalad and caudal spinal cord compared to TD. The FA values demonstrated perilesional abnormal DTI findings in the middle and proximal segments of the cephalad and caudal cord in the SCIWOMR AIS A/B group compared to SCIWOMR AIS C/D group. CONCLUSIONS: We found DTI changes in children with SCIWOMR with different causes of spinal lesions. We also investigated the relationship between DTI and clinical AIS scores. This study further examined the potential diagnostic value of DTI and should be translatable to adults with spinal cord lesions.


Asunto(s)
Trastornos Motores , Traumatismos de la Médula Espinal , Adolescente , Adulto , Niño , Estudios de Cohortes , Imagen de Difusión Tensora/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Trastornos Motores/patología , Médula Espinal/diagnóstico por imagen , Médula Espinal/patología , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/diagnóstico por imagen , Traumatismos de la Médula Espinal/patología
9.
Neuroimage ; 253: 119111, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35331873

RESUMEN

The spinal cord is important for sensory guidance and execution of skilled movements. Yet its role in human motor learning is not well understood. Despite evidence revealing an active involvement of spinal circuits in the early phase of motor learning, whether long-term learning engages similar changes in spinal cord activation and functional connectivity remains unknown. Here, we investigated spinal-cerebral functional plasticity associated with learning of a specific sequence of visually-guided joystick movements (sequence task) over six days of training. On the first and last training days, we acquired high-resolution functional images of the brain and cervical cord simultaneously, while participants practiced the sequence or a random task while electromyography was recorded from wrist muscles. After six days of training, the subjects' motor performance improved in the sequence compared to the control condition. These behavioral changes were associated with decreased co-contractions and increased reciprocal activations between antagonist wrist muscles. Importantly, early learning was characterized by activation in the C8 level, whereas a more rostral activation in the C6-C7 was found during the later learning phase. Motor sequence learning was also supported by increased spinal cord functional connectivity with distinct brain networks, including the motor cortex, superior parietal lobule, and the cerebellum at the early stage, and the angular gyrus and cerebellum at a later stage of learning. Our results suggest that the early vs. late shift in spinal activation from caudal to rostral cervical segments synchronized with distinct brain networks, including parietal and cerebellar regions, is related to progressive changes reflecting the increasing fine control of wrist muscles during motor sequence learning.


Asunto(s)
Mapeo Encefálico , Imagen por Resonancia Magnética , Encéfalo/fisiología , Humanos , Aprendizaje/fisiología , Médula Espinal
12.
Sci Data ; 8(1): 219, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34400655

RESUMEN

In a companion paper by Cohen-Adad et al. we introduce the spine generic quantitative MRI protocol that provides valuable metrics for assessing spinal cord macrostructural and microstructural integrity. This protocol was used to acquire a single subject dataset across 19 centers and a multi-subject dataset across 42 centers (for a total of 260 participants), spanning the three main MRI manufacturers: GE, Philips and Siemens. Both datasets are publicly available via git-annex. Data were analysed using the Spinal Cord Toolbox to produce normative values as well as inter/intra-site and inter/intra-manufacturer statistics. Reproducibility for the spine generic protocol was high across sites and manufacturers, with an average inter-site coefficient of variation of less than 5% for all the metrics. Full documentation and results can be found at https://spine-generic.rtfd.io/ . The datasets and analysis pipeline will help pave the way towards accessible and reproducible quantitative MRI in the spinal cord.


Asunto(s)
Imagen por Resonancia Magnética , Neuroimagen , Médula Espinal/diagnóstico por imagen , Médula Espinal/ultraestructura , Adulto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Reproducibilidad de los Resultados
13.
Nat Protoc ; 16(10): 4611-4632, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34400839

RESUMEN

Quantitative spinal cord (SC) magnetic resonance imaging (MRI) presents many challenges, including a lack of standardized imaging protocols. Here we present a prospectively harmonized quantitative MRI protocol, which we refer to as the spine generic protocol, for users of 3T MRI systems from the three main manufacturers: GE, Philips and Siemens. The protocol provides guidance for assessing SC macrostructural and microstructural integrity: T1-weighted and T2-weighted imaging for SC cross-sectional area computation, multi-echo gradient echo for gray matter cross-sectional area, and magnetization transfer and diffusion weighted imaging for assessing white matter microstructure. In a companion paper from the same authors, the spine generic protocol was used to acquire data across 42 centers in 260 healthy subjects. The key details of the spine generic protocol are also available in an open-access document that can be found at https://github.com/spine-generic/protocols . The protocol will serve as a starting point for researchers and clinicians implementing new SC imaging initiatives so that, in the future, inclusion of the SC in neuroimaging protocols will be more common. The protocol could be implemented by any trained MR technician or by a researcher/clinician familiar with MRI acquisition.


Asunto(s)
Imagen por Resonancia Magnética , Neuroimagen , Médula Espinal , Adulto , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino
14.
PLoS Biol ; 18(7): e3000789, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32614823

RESUMEN

In the absence of any task, both the brain and spinal cord exhibit spontaneous intrinsic activity organised in a set of functionally relevant neural networks. However, whether such resting-state networks (RSNs) are interconnected across the brain and spinal cord is unclear. Here, we used a unique scanning protocol to acquire functional images of both brain and cervical spinal cord (CSC) simultaneously and examined their spatiotemporal correspondence in humans. We show that the brain and spinal cord activities are strongly correlated during rest periods, and specific spinal cord regions are functionally linked to consistently reported brain sensorimotor RSNs. The functional organisation of these networks follows well-established anatomical principles, including the contralateral correspondence between the spinal hemicords and brain hemispheres as well as sensory versus motor segregation of neural pathways along the brain-spinal cord axis. Thus, our findings reveal a unified functional organisation of sensorimotor networks in the entire central nervous system (CNS) at rest.


Asunto(s)
Encéfalo/fisiología , Descanso/fisiología , Médula Espinal/fisiología , Adulto , Mapeo Encefálico , Corteza Cerebral/fisiología , Femenino , Humanos , Masculino , Red Nerviosa/fisiología
15.
Magn Reson Med ; 81(2): 1296-1306, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30206991

RESUMEN

PURPOSE: To detect microscopic diffusion anisotropy in human cortical gray matter in vivo with double diffusion encoding experiments. METHODS: Double diffusion encoding experiments were performed on a 3 T whole-body MR system using echo-planar imaging. Angular double diffusion encoding measurements were acquired with 8 × 8 and 12 × 12 planar direction combinations and were analyzed in three regions of interest containing white matter, mostly cortical gray matter, and one having significant contributions from cerebrospinal fluid. Inversion with variable recovery times served to estimate and eliminate white matter partial volume effects. To investigate the influence of magnetic field inhomogeneities, experiments with gradient offsets and cross-term compensated diffusion weightings were performed. The MA index, a rotationally invariant measure of the microscopic diffusion anisotropy, was determined from measurements with 96 direction combinations. RESULTS: The angular signal modulation in the gray matter region of interest has two components, one being consistent, inter alia, with cross terms with field inhomogeneities while the other represents a signal difference between parallel/antiparallel and orthogonal direction combinations, ie, the fingerprint of microscopic diffusion anisotropy. Based on the amplitudes and their dependency on the inversion time, white matter partial volumes can be excluded as the sole source for this modulation, providing strong evidence for the detection of microscopic diffusion anisotropy in cortical gray matter. MA maps of healthy volunteers show considerably lower values in cortical gray matter compared with white matter. CONCLUSION: Microscopic diffusion anisotropy can be measured in human cortical brain matter, which could help to characterize the microstructure of healthy and pathological tissue.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Imagen Eco-Planar , Sustancia Gris/diagnóstico por imagen , Algoritmos , Anisotropía , Encéfalo/diagnóstico por imagen , Líquido Cefalorraquídeo , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen , Sustancia Blanca/diagnóstico por imagen , Imagen de Cuerpo Entero
16.
J Neurotrauma ; 36(6): 853-861, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30113265

RESUMEN

There are no studies to date,describing changes in the diffusion tensor imaging (DTI) metrics of the white matter (WM) regions of the entire cervical and thoracic spinal cord (SC) remote from the lesion in pediatric spinal cord injury (SCI) subjects. The purpose of this study was to determine whether DTI at sites cephalad and caudal to a lesion provides measures of cord abnormalities in children with chronic SCI. A retrospective study included 10 typically developing subjects (TD) and 10 subjects with chronic SCI who underwent SC imaging in 2014-2017. Axial diffusion tensor images using an inner field of view DTI sequence were acquired to cover the entire cervical and thoracic SC. Regions of interest were drawn on the SC WM: right and left lateral (motor), ventral (motor), and dorsal (sensory) tracts. To detect differences in DTI metrics between TD and SCI of the cord, a one way analysis of variance with pooled t test was performed. A stepwise regression analysis was performed to assess the correlation between DTI metrics and clinical scores. In motor and sensory tracts, fractional anisotropy (FA) and axial diffusivity (AD) were significantly decreased in the proximal segments of the caudal cord. In motor tracts cephalad to the lesion, FA was significantly decreased whereas AD was significantly increased in the proximal segment; however, AD was decreased in the distal and middle segments. International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) total score was significantly correlated with FA and AD of the motor and sensory tracts cephalad to the lesion. This study demonstrates that FA and AD have the potential to be sensitive biomarkers of the full extent of cord injury and might be useful in detecting remote injuries to the SC and in guiding new treatments.


Asunto(s)
Médula Cervical/diagnóstico por imagen , Traumatismos de la Médula Espinal/diagnóstico por imagen , Traumatismos de la Médula Espinal/patología , Médula Espinal/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adolescente , Médula Cervical/patología , Niño , Imagen de Difusión Tensora/métodos , Femenino , Humanos , Masculino , Neuroimagen/métodos , Estudios Retrospectivos , Médula Espinal/patología , Sustancia Blanca/patología
17.
Neuroimage Clin ; 18: 784-792, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29876264

RESUMEN

Background and objective: Diffusion tensor imaging (DTI) and diffusion tensor tractography (DTT) are two techniques that can measure white matter integrity of the spinal cord. Recently, DTI indices have been shown to change with age. The purpose of this study is (a) to evaluate the maturational states of the entire pediatric spinal cord using DTI and DTT indices including fractional anisotropy (FA), mean diffusivity (MD), mean length of white matter fiber tracts and tract density and (b) to analyze the DTI and DTT parameters along the entire spinal cord as a function of spinal cord levels and age. Method: A total of 23 typically developing (TD) pediatric subjects ranging in age from 6 to 16 years old (11.94 ±â€¯3.26 (mean ±â€¯standard deviation), 13 females and 10 males) were recruited, and scanned using 3.0 T MR scanner. Reduced FOV diffusion tensor images were acquired axially in the same anatomical location prescribed for the T2-weighted images to cover the entire spinal cord (C1-mid L1 levels). To mitigate motion induced artifacts, diffusion directional images were aligned with the reference image (b0) using a rigid body registration algorithm performed by in-house software developed in Matlab (MathWorks, Natick, Massachusetts). Diffusion tensor maps (FA and MD) and streamline deterministic tractography were then generated from the motion corrected DTI dataset. DTI and DTT parameters were calculated by using ROIs drawn to encapsulate the whole cord along the entire spinal cord by an independent board certified neuroradiologist. These indices then were compared between two age groups (age group A = 6-11 years (n = 11) and age group B = 12-16 years (n = 12)) based on similar standards and age definitions used for reporting spinal cord injury in the pediatric population. Standard least squared linear regression based on a restricted maximum likelihood (REML) method was used to evaluate the relationship between age and DTI and DTT parameters. Results: An increase in FA (group A = 0.42 ±â€¯0.097, group B = 0.49 ±â€¯0.116), white matter tract density (group A = 368.01 ±â€¯236.88, group B = 440.13 ±â€¯245.24) and mean length of fiber tracts (group A = 48.16 ±â€¯20.48 mm, group B = 60.28 ±â€¯23.87 mm) and a decrease in MD (group A = 1.06 ±â€¯0.23 × 10-3 mm2/s, group B = 0.82 ±â€¯0.24 × 10-3 mm2/s) were observed with age along the entire spinal cord. Statistically significant increases have been shown in FA (p = 0.004, R2 = 0.57), tract density (p = 0.0004, R2 = 0.58), mean length of fiber tracts (p < 0.001, R2 = 0.5) and a significant decrease has been shown in MD (p = 0.002, R2 = 0.59) between group A and group B. Also, it has been shown DTI and DTT parameters vary along the spinal cord as a function of intervertebral disk and mid-vertebral body level. Conclusion: This study provides an initial understanding of age related changes of DTI values as well as DTT metrics of the spinal cord. The results show significant differences in DTI and DTT parameters which may result from decreasing water content, myelination of fiber tracts, and the thickening diameter of fiber tracts during the maturation process. Consequently, when quantitative DTI and DTT of the spinal cord is undertaken in the pediatric population an age and level matched normative dataset should be used to accurately interpret the quantitative results.


Asunto(s)
Imagen de Difusión Tensora , Procesamiento de Imagen Asistido por Computador , Médula Espinal/fisiopatología , Sustancia Blanca/fisiopatología , Adolescente , Factores de Edad , Anisotropía , Niño , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Médula Espinal/crecimiento & desarrollo , Traumatismos de la Médula Espinal
18.
Nat Commun ; 9(1): 1220, 2018 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-29572476

RESUMEN

In animals, 17-beta-estradiol (E2) enhances hippocampal plasticity in a dose-dependent, monotonically increasing manner, but this relationship can also exhibit an inverted U-shaped function. To investigate E2's dose-response function in the human hippocampus, we pharmacologically increased E2 levels in 125 naturally cycling women (who were in their low-hormone menstruation phase) to physiological (equivalent to menstrual cycle peak) and supraphysiological (equivalent to levels during early pregnancy) concentrations in a placebo-controlled design. Twenty-four hours after first E2 intake, we measured brain activity during encoding of neutral and negative pictures and then tested recognition memory 24 h after encoding. Here we report that E2 exhibits both a monotonically increasing relationship with hippocampal activity as well as an inverted U-shaped relationship, depending on the hippocampal region. Hippocampal activity exhibiting a U-shaped relationship inflects at supraphysiological E2 levels, suggesting that while E2 within physiological ranges stimulates hippocampal activity, supraphysiological ranges show opposite effects.


Asunto(s)
Estradiol/farmacología , Estrógenos/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Ciclo Menstrual , Adolescente , Adulto , Afecto , Conducta , Relación Dosis-Respuesta a Droga , Femenino , Hormonas , Humanos , Menstruación , Modelos Neurológicos , Neuroimagen , Adulto Joven
19.
J Neurotrauma ; 35(3): 452-460, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29073810

RESUMEN

The aim of this study is to assess the utility and effectiveness of diffusion tensor imaging (DTI) and diffusion tensor tractography (DTT) of the entire pediatric cervical and thoracic spinal cord toward discrimination of typically developing (TD) controls and subjects with spinal cord injury (SCI). A total of 43 pediatric subjects, including 23 TD subjects ranging in age from 6 to 16 years old and 20 subjects with SCI ranging in age from 7 to 16 years, were recruited and scanned using a 3.0 Tesla magnetic resonance scanner. Reduced field of view diffusion tensor images were acquired axially to cover the entire spinal cord across two slabs. For DTI analysis, motion correction was performed by coregistration of the diffusion-weighted images to the reference image (b0). Streamline deterministic tractography results were generated from the preprocessed data. DTI and DTT parameters of the whole cord, including fractional anisotropy (FA), mean diffusivity (MD), tract length, and tract density, were calculated, averaged across the whole spinal cord, and compared between the TD and SCI groups. Statistically significant decreases have been shown in FA (TD = 0.46 ± 0.11; SCI = 0.37 ± 0.09; p < 0.0001) and tract density (TD = 405.93 ± 243.84; SCI = 268.90 ± 270.34; p < 0.0001). However, the mean length of tracts and MD did not show significant differences. When investigating differences in DTI and DTT parameters above and below the injury site, it was shown that the FA and tract density in patients with cervical SCI decreased significantly in the thoracic region. An identical trend was observed in the cervical region for patients with thoracic SCI as well. When comparing TD and SCI subjects, FA and tract density were the most sensitive parameters in detecting functional changes of the spinal cord in chronic pediatric SCI. The results show that both DTI and DTT have the potential to be imaging biomarkers in the diagnosis of SCI.


Asunto(s)
Imagen de Difusión Tensora/métodos , Neuroimagen/métodos , Traumatismos de la Médula Espinal/diagnóstico por imagen , Adolescente , Médula Cervical/diagnóstico por imagen , Médula Cervical/lesiones , Niño , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Médula Espinal/diagnóstico por imagen
20.
Magn Reson Imaging ; 47: 7-15, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29154897

RESUMEN

PURPOSE: Ghost artifacts are a major contributor to degradation of spinal cord diffusion tensor images. A multi-stage post-processing pipeline was designed, implemented and validated to automatically remove ghost artifacts arising from reduced field of view diffusion tensor imaging (DTI) of the pediatric spinal cord. METHOD: A total of 12 pediatric subjects including 7 healthy subjects (mean age=11.34years) with no evidence of spinal cord injury or pathology and 5 patients (mean age=10.96years) with cervical spinal cord injury were studied. Ghost/true cords, labeled as region of interests (ROIs), in non-diffusion weighted b0 images were segmented automatically using mathematical morphological processing. Initially, 21 texture features were extracted from each segmented ROI including 5 first-order features based on the histogram of the image (mean, variance, skewness, kurtosis and entropy) and 16s-order feature vector elements, incorporating four statistical measures (contrast, correlation, homogeneity and energy) calculated from co-occurrence matrices in directions of 0°, 45°, 90° and 135°. Next, ten features with a high value of mutual information (MI) relative to the pre-defined target class and within the features were selected as final features which were input to a trained classifier (adaptive neuro-fuzzy interface system) to separate the true cord from the ghost cord. RESULTS: The implemented pipeline was successfully able to separate the ghost artifacts from true cord structures. The results obtained from the classifier showed a sensitivity of 91%, specificity of 79%, and accuracy of 84% in separating the true cord from ghost artifacts. CONCLUSION: The results show that the proposed method is promising for the automatic detection of ghost cords present in DTI images of the spinal cord. This step is crucial towards development of accurate, automatic DTI spinal cord post processing pipelines.


Asunto(s)
Artefactos , Imagen de Difusión Tensora , Traumatismos de la Médula Espinal/diagnóstico por imagen , Médula Espinal/diagnóstico por imagen , Niño , Reacciones Falso Positivas , Femenino , Lógica Difusa , Voluntarios Sanos , Humanos , Masculino , Distribución Normal , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Médula Espinal/patología , Traumatismos de la Médula Espinal/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA