RESUMEN
From 1 January 2022 to 31 May 2024, the World Health Organization (WHO) reported 97,745 laboratory-confirmed Mpox cases, including 203 deaths, across 116 countries. Despite a 2.3% decrease in new cases in May 2024 compared to April 2024, significant regional variations persist. The African Region reported the highest proportion of new cases, while other regions experienced mixed trends. Phylogenomic analyses of the Mpox virus Clade IIb lineage B.1 reveal stable genetic variability with minimal diversification. The Bayesian Skyline Plot indicates a generally stable viral population size with a modest peak in late 2023, followed by a decline. In general, the data indicate that the MPXV outbreak is primarily localized within a few consistent geographic clusters. The virus's evolution is relatively slow, as indicated by its stable genetic variability, and Clade IIb lineage B.1 does not currently show signs of rapid genetic changes or population growth. The current low level of genetic diversity should not lead to complacency. Ongoing genomic surveillance is essential for effective outbreak management and understanding. This monitoring is crucial for identifying any shifts in the virus's behavior or transmission, allowing for prompt public health responses and adjustments. In addition, continued vigilance is necessary to detect any new variants that might influence the outbreak's trajectory.
RESUMEN
We report the use of a new multiplex Real-Time PCR platform to simultaneously identify 24 pathogens and 3 antimicrobial-resistance genes directly from respiratory samples of COVID-19 patients. Results were compared to culture-based diagnosis. Secondary infections were detected in 60% of COVID-19 patients by molecular analysis and 73% by microbiological assays, with no significant differences in accuracy, indicating Gram-negative bacteria as the predominant species. Among fungal superinfections, Aspergillus spp. were detected by both methods in more than 7% of COVID-19 patients. Oxacillin-resistant S. aureus and carbapenem-resistant K. pneumoniae were highlighted by both methods. Secondary microbial infections in SARS-CoV-2 patients are associated with poor outcomes and an increased risk of death. Since PCR-based tests significantly reduce the turnaround time to 4 hours and 30 minutes (compared to 48 hours for microbial culture), we strongly support the routine use of molecular techniques, in conjunction with microbiological analysis, to identify co/secondary infections.
Asunto(s)
COVID-19 , Coinfección , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/microbiología , SARS-CoV-2/genética , Coinfección/diagnóstico , Coinfección/microbiología , Coinfección/virología , Masculino , Persona de Mediana Edad , Femenino , Técnicas de Diagnóstico Molecular/métodos , Anciano , Infecciones del Sistema Respiratorio/microbiología , Infecciones del Sistema Respiratorio/diagnóstico , Infecciones del Sistema Respiratorio/virología , Reacción en Cadena de la Polimerasa Multiplex/métodos , Adulto , Farmacorresistencia Bacteriana/genética , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Bacterias/clasificación , Infecciones Bacterianas/diagnóstico , Infecciones Bacterianas/microbiologíaRESUMEN
BACKGROUND: Despite evidence showing a connection between inflammation and endometrial cancer (EC) risk, the surveys on genetic correlation and cohort studies investigating the impact on long-term outcomes have yet to be refined. We aimed to address the impact of inflammation factors on the pathogenesis, progression and consequences of EC. METHODS: For the genetic correlation analyses, a two-sample of Mendelian randomization (MR) study was applied to investigate inflammation-related single-nucleotide polymorphisms involved with endometrial cancer from GWAS databases. The observational retrospective study included consecutive patients diagnosed with EC (stage I to IV) with surgeries between January 2010 and October 2020 at the Cancer Hospital of Shantou University Medical College. RESULTS: The 2-sample MR surveys indicated no causal relationship between inflammatory cytokines and endometrial cancer. 780 cases (median age, 55.0 years ) diagnosed with EC were included in the cohort and followed up for an average of 6.8 years. Increased inflammatory parameters at baseline were associated with a higher FIGO stage and invasive EC risk (odds ratios [OR] 1.01 to 4.20). Multivariate-cox regression suggested that multiple inflammatory indicators were significantly associated with overall survival (OS) and progression-free survival (PFS) (P < 0.05). Nomogram models based on inflammatory risk and clinical factors were developed for OS and PFS with C-index of 0.811 and 0.789, respectively. LASSO regression for the validation supported the predictive efficacy of inflammatory and clinical factors on the long-term outcomes of EC. CONCLUSIONS: Despite the fact that the genetic surveys did not show a detrimental impact of inflammatory cytokines on the endometrial cancer risk, our cohort study suggested that inflammatory level was associated with the progression and long-term outcomes of EC. This evidence may contribute to new strategies targeted at decreasing inflammation levels during EC therapy.
Asunto(s)
Neoplasias Endometriales , Estudio de Asociación del Genoma Completo , Inflamación , Polimorfismo de Nucleótido Simple , Humanos , Femenino , Neoplasias Endometriales/genética , Neoplasias Endometriales/patología , Neoplasias Endometriales/mortalidad , Persona de Mediana Edad , Inflamación/genética , Estudios Retrospectivos , Anciano , Análisis de la Aleatorización Mendeliana , Nomogramas , Estudios de Cohortes , Adulto , PronósticoRESUMEN
Trichomonas vaginalis and Mycoplasma hominis, two microorganisms causing infections of the urogenital tract, are closely associated in that they establish an endosymbiosis relationship, the only case among human pathogens. As a result, the presence of one microorganism may be considered a sign that the other is present as well. Identification of the two pathogens in clinical samples is based on cultivation techniques on specific media, even though in recent years, new sensitive and rapid molecular techniques have become. Here, we demonstrate that the concomitant presence of T.vaginalis in urogenital swabs may lead to a delay in the identification of M.hominis, and thus to an underestimation of bacterial infections when cultural techniques are used.
Asunto(s)
Infecciones por Mycoplasma , Mycoplasma hominis , Trichomonas vaginalis , Mycoplasma hominis/aislamiento & purificación , Mycoplasma hominis/genética , Trichomonas vaginalis/aislamiento & purificación , Trichomonas vaginalis/genética , Humanos , Infecciones por Mycoplasma/microbiología , Femenino , Vaginitis por Trichomonas/microbiología , Vaginitis por Trichomonas/parasitología , Vaginitis por Trichomonas/diagnóstico , Masculino , Sensibilidad y Especificidad , Sistema Urogenital/microbiología , Sistema Urogenital/parasitología , AdultoRESUMEN
The cultivation of cyanobacteria by exploiting available in situ resources represents a possible way to supply food and oxygen to astronauts during long-term crewed missions on Mars. Here, we evaluated the possibility of cultivating the extremophile cyanobacterium Chroococcidiopsis thermalis CCALA 050 under operating conditions that should occur within a dome hosting a recently patented process to produce nutrients and oxygen on Mars. The medium adopted to cultivate this cyanobacterium, named Martian medium, was obtained using a mixture of regolith leachate and astronauts' urine simulants that would be available in situ resources whose exploitation could reduce the mission payload. The results demonstrated that C. thermalis can grow in such a medium. For producing high biomass, the best medium consisted of specific percentages (40%vol) of Martian medium and a standard medium (60%vol). Biomass produced in such a medium exhibits excellent antioxidant properties and contains significant amounts of pigments. Lipidomic analysis demonstrated that biomass contains strategic lipid classes able to help the astronauts facing the oxidative stress and inflammatory phenomena taking place on Mars. These characteristics suggest that this strain could serve as a valuable nutritional resource for astronauts.
RESUMEN
Background: The contribution of gut microbiota to the pathogenesis of polycystic ovary syndrome (PCOS) is controversial. The causal relationship to this question is worth an in-depth comprehensive of known single nucleotide polymorphisms associated with gut microbiota. Methods: We conducted bidirectional Mendelian randomization (MR) utilizing instrumental variables associated with gut microbiota (N = 18,340) from MiBioGen GWAS to assess their impact on PCOS risk in the FinnGen GWAS (27,943 PCOS cases and 162,936 controls). Two-sample MR using inverse variance weighting (IVW) was undertaken, followed by the weighted median, weighted mode, and MR-Egger regression. In a subsample, we replicated our findings using the meta-analysis PCOS consortium (10,074 cases and 103,164 controls) from European ancestry. Results: IVWMR results suggested that six gut microbiota were causally associated with PCOS features. After adjusting BMI, SHBG, fasting insulin, testosterone, and alcohol intake frequency, the effect sizes were significantly reduced. Reverse MR analysis revealed that the effects of PCOS features on 13 gut microbiota no longer remained significant after sensitivity analysis and Bonferroni corrections. MR replication analysis was consistent and the results suggest that gut microbiota was likely not an independent cause of PCOS. Conclusion: Our findings did not support the causal relationships between the gut microbiota and PCOS features at the genetic level. More comprehensive genome-wide association studies of the gut microbiota and PCOS are warranted to confirm their genetic relationship. Declaration: This study contains 3533 words, 0 tables, and six figures in the text as well as night supplementary files and 0 supplementary figures in the Supplementary material.
Asunto(s)
Diarrea Infantil , Facies , Retardo del Crecimiento Fetal , Microbioma Gastrointestinal , Enfermedades del Cabello , Síndrome del Ovario Poliquístico , Femenino , Humanos , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Síndrome del Ovario Poliquístico/genéticaRESUMEN
OBJECTIVE: The current study aimed to address and rank which exercise-based interventions are preferable to standard care/no therapy or another exercise intervention for postpartum depression (PPD) management and provide estimates for future definitive evidence. METHODS: The authors systematically searched PubMed, Embase, the Web of Science, PsycInfo, and ClinicalTrails.gov for randomized controlled trials (RCTs) on exercise-based interventions for PPD from their inception to May 9, 2023. Included were RCTs of exercise-based interventions for PPD with at least 4 weeks' duration. The pooled effects of intervention comparisons were generated by the Bayesian random-effects model, and the quality of evidence was evaluated by the Grading of Recommendations, Assessment, Development, and Evaluations framework. RESULTS: Twelve RCTs (1260 women; mean age, 20-35 years) comparing exercise-based interventions with usual care/no therapy were included. Exercise effectively treats depressive symptoms (standard mean difference [SMD], -0.81 [95% confidence interval (CI), -1.20 to -0.42], P < 0.001). Pram walking was significantly associated with a reduction of depressive symptoms during the postpartum period (SMD, -1.00 [95% CI, -2.60 to -0.10], P = 0.020), as well as yoga (SMD, -0.73 [95% CI, -1.84 to -0.43], P < 0.001) and supervised mixed exercise (SMD, -0.77 [95% CI, -1.67 to -0.01], P = 0.041) compared with usual care/no therapy. In indirect comparisons, pram walking (surface under the cumulative ranking curve, 58.9%) was better than yoga (SMD, -0.28 [95% CI, -1.86 to 1.22], P = 0.322) and supervised mixed exercise (SMD, -0.23 [95% CI, -1.59 to 1.12], P = 0.358). However, the difference was not statistically significant. The confidence in evidence was very low to moderate. CONCLUSION: In women with PPD, all commonly prescribed physical exercises were effective alternative or complementary treatments. However, pram walking may perform better in improving the symptoms of PPD.
Asunto(s)
Depresión Posparto , Calidad de Vida , Femenino , Humanos , Adulto Joven , Adulto , Depresión Posparto/terapia , Metaanálisis en Red , Ejercicio Físico , Depresión/terapiaRESUMEN
OBJECTIVES: Mycoplasma hominis, an opportunistic pathogen of the human lower urogenital tract, can survive and replicate within the protozoan Trichomonas vaginalis, establishing an endosymbiotic relationship. The intracellular location may provide a means for the bacteria to evade the immune system and protection from antimicrobial activities. Our aim was to investigate the influence of the endosymbiotic association of M. hominis with trichomonad cells on bacterial antibiotic susceptibility. METHODS: We evaluated antibiotic resistance patterns in a group of M. hominis isolated from T. vaginalis clinical specimens as well as in M. hominis isolated from patients without trichomoniasis. Using an experimental model system, we compared the minimum inhibitory concentration (MIC) and lethal concentration (MLC) of tetracycline on M. hominis endosymbionts of T. vaginalis and extracellular bacteria. RESULTS: The incidence rate of M. hominis strains resistant to C14 and C15 macrolide antibiotics was higher in intracellular strains associated with T. vaginalis compared with extracellular bacteria isolated from women not affected by trichomoniasis. However, sensitivity to tetracycline and quinolones was similar in both groups. In vitro experiments demonstrated that M. hominis strains, when isolated as endosymbionts from T. vaginalis, exhibited reduced sensitivity to tetracycline when cultured extracellularly for at least eight weeks. CONCLUSION: The intracellular localization of bacteria within trichomonad cells may affect antibiotic susceptibility.
Asunto(s)
Tricomoniasis , Trichomonas vaginalis , Humanos , Femenino , Metronidazol/farmacología , Mycoplasma hominis , Antibacterianos/farmacología , Farmacorresistencia Microbiana , Bacterias , TetraciclinasRESUMEN
The XBB.1.16 SARS-CoV-2 variant, also known as Arcturus, is a recent descendant lineage of the recombinant XBB (nicknamed Gryphon). Compared to its direct progenitor, XBB.1, XBB.1.16 carries additional spike mutations in key antigenic sites, potentially conferring an ability to evade the immune response compared to other circulating lineages. In this context, we conducted a comprehensive genome-based survey to gain a detailed understanding of the evolution and potential dangers of the XBB.1.16 variant, which became dominant in late June. Genetic data indicates that the XBB.1.16 variant exhibits an evolutionary background with limited diversification, unlike dangerous lineages known for rapid changes. The evolutionary rate of XBB.1.16, which amounts to 3.95 × 10-4 subs/site/year, is slightly slower than that of its direct progenitors, XBB and XBB.1.5, which have been circulating for several months. A Bayesian Skyline Plot reconstruction suggests that the peak of genetic variability was reached in early May 2023, and currently, it is in a plateau phase with a viral population size similar to the levels observed in early March. Structural analyses indicate that, overall, the XBB.1.16 variant does not possess structural characteristics markedly different from those of the parent lineages, and the theoretical affinity for ACE2 does not seem to change among the compared variants. In conclusion, the genetic and structural analyses of SARS-CoV-2 XBB.1.16 do not provide evidence of its exceptional danger or high expansion capability. Detected differences with previous lineages are probably due to genetic drift, which allows the virus constant adaptability to the host, but they are not necessarily connected to a greater danger. Nevertheless, continuous genome-based monitoring is essential for a better understanding of its descendants and other lineages.
Asunto(s)
COVID-19 , Humanos , Teorema de Bayes , COVID-19/genética , SARS-CoV-2/genética , Flujo GenéticoRESUMEN
The severe acute respiratory syndrome coronavirus 2 EG.5 lineage is the latest variant under monitoring, and it is generating significant concern due to its recent upward trend in prevalence. Our aim was to gain insights into this emerging lineage and offer insights into its actual level of threat. Both genetic and structural data indicate that this novel variant presently lacks substantial evidence of having a high capacity for widespread transmission. Their viral population sizes expanded following a very mild curve and peaked several months after the earliest detected sample. Currently, neither the viral population size of EG.5 nor that of its first descendant is increasing. The genetic variability appear to be flattened, as evidenced by its relatively modest evolutionary rate (9.05 × 10-4 subs/site/year). As has been observed with numerous prior variants, attributes that might theoretically provide advantages seem to stem from genetic drift, enabling the virus to continually adjust to its host, albeit without a clear association with enhanced dangerousness. These findings further underscore the necessity for ongoing genome-based monitoring, ensuring preparedness and a well-documented understanding of the unfolding situation.
Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/genética , Evolución Biológica , Flujo Genético , Densidad de PoblaciónRESUMEN
Trichomonas vaginalis is a pathogenic protozoan diffused worldwide capable of infecting the urogenital tract in humans, causing trichomoniasis. One of its most intriguing aspects is the ability to establish a close relationship with endosymbiotic microorganisms: the unique association of T. vaginalis with the bacterium Mycoplasma hominis represents, to date, the only example of an endosymbiosis involving two true human pathogens. Since its discovery, several aspects of the symbiosis between T. vaginalis and M. hominis have been characterized, demonstrating that the presence of the intracellular guest strongly influences the pathogenic characteristics of the protozoon, making it more aggressive towards host cells and capable of stimulating a stronger proinflammatory response. The recent description of a further symbiont of the protozoon, the newly discovered non-cultivable mycoplasma Candidatus Mycoplasma girerdii, makes the picture even more complex. This review provides an overview of the main aspects of this complex microbial consortium, with particular emphasis on its effect on protozoan pathobiology and on the interplays among the symbionts.
RESUMEN
Recombination events are very common and represent one of the primary drivers of RNA virus evolution. The XBF SARS-CoV-2 lineage is one of the most recently generated recombinants during the COVID-19 pandemic. It is a recombinant of BA.5.2.3 and BA.2.75.3, both descendants of lineages that caused many concerns (BA.5 and BA.2.75, respectively). Here, we performed a genomic survey focused on comparing the recombinant XBF with its parental lineages to provide a comprehensive assessment of the evolutionary potential, epidemiological trajectory, and potential risks. Genetic analyses indicated that although XBF initially showed the typical expansion depicted by a steep curve, causing several concerns, currently there is no indication of significant expansion potential or a contagion rate surpassing that of other currently active or previously prevalent lineages. BSP indicated that the peak has been reached around 19 October 2022 and then the genetic variability suffered slight oscillations until early 5 March 2023 when the population size reduced for the last time starting its last plateau that is still lasting. Structural analyses confirmed its reduced potential, also indicating that properties of NTDs and RBDs of XBF and its parental lineages present no significant difference. Of course, cautionary measures must still be taken and genome-based monitoring remains the best tool for detecting any important changes in viral genome composition.
RESUMEN
Since the beginning of the pandemic, the generation of new variants periodically recurs. The XBB.1.5 SARS-CoV-2 variant is one of the most recent. This research was aimed at verifying the potential hazard of this new subvariant. To achieve this objective, we performed a genome-based integrative approach, integrating results from genetic variability/phylodynamics with structural and immunoinformatic analyses to obtain as comprehensive a viewpoint as possible. The Bayesian Skyline Plot (BSP) shows that the viral population size reached the plateau phase on 24 November 2022, and the number of lineages peaked at the same time. The evolutionary rate is relatively low, amounting to 6.9 × 10-4 subs/sites/years. The NTD domain is identical for XBB.1 and XBB.1.5 whereas their RBDs only differ for the mutations at position 486, where the Phe (in the original Wuhan) is replaced by a Ser in XBB and XBB.1, and by a Pro in XBB.1.5. The variant XBB.1.5 seems to spread more slowly than sub-variants that have caused concerns in 2022. The multidisciplinary molecular in-depth analyses on XBB.1.5 performed here does not provide evidence for a particularly high risk of viral expansion. Results indicate that XBB.1.5 does not possess features to become a new, global, public health threat. As of now, in its current molecular make-up, XBB.1.5 does not represent the most dangerous variant.
RESUMEN
The SARS-CoV-2 BF.7 variant represents one of the most recent subvariant under monitoring. At the beginning of the 2023 it caused several concerns especially in Asia because of a resurge in COVID-19 cases. Here we perform a genome-based integrative approach on SARS-CoV-2 BF.7 to shed light on this emerging lineage and produce some consideration on its real dangerousness. Both genetic and structural data suggest that this new variant currently does not show evidence of an high expansion capability. It is very common in Asia, but it appears less virulent than other Omicron variants as proved by its relatively low evolutionary rate (5.62 × 10-4 subs/sites/years). The last plateau has been reached around December 14, 2022 and then the genetic variability, and thus the viral population size, no longer increased. As already seen for several previous variants, the features that may be theoretically related to advantages are due to genetic drift that allows to the virus a constant adaptability to the host, but is not strictly connected to a fitness advantage. These results have further pointed that the genome-based monitoring must continue uninterruptedly to be prepared and well documented on the real situation.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Asia/epidemiología , Evolución BiológicaRESUMEN
Recombination is the main contributor to RNA virus evolution, and SARS-CoV-2 during the pandemic produced several recombinants. The most recent SARS-CoV-2 recombinant is the lineage labeled XBB, also known as Gryphon, which arose from BJ.1 and BM.1.1.1. Here we performed a genome-based survey aimed to compare the new recombinant with its parental lineages that never became dominant. Genetic analyses indicated that the recombinant XBB and its first descendant XBB.1 show an evolutionary condition typical of an evolutionary blind background with no further epidemiologically relevant descendant. Genetic variability and expansion capabilities are slightly higher than parental lineages. Bayesian Skyline Plot indicates that XBB reached its plateau around October 6, 2022 and after an initial rapid growth the viral population size did not further expand, and around November 10, 2022 its levels of genetic variability decreased. Simultaneously with the reduction of the XBB population size, an increase of the genetic variability of its first sub-lineage XBB.1 occurred, that in turn reached the plateau around November 9, 2022 showing a kind of vicariance with its direct progenitors. Structure analysis indicates that the affinity for ACE2 surface in XBB/XBB.1 RBDs is weaker than for BA.2 RBD. In conclusion, at present XBB and XBB.1 do not show evidence about a particular danger or high expansion capability. Genome-based monitoring must continue uninterrupted to individuate if further mutations can make XBB more dangerous or generate new subvariants with different expansion capability.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Teorema de Bayes , Glicoproteína de la Espiga del Coronavirus/químicaRESUMEN
Trichomonas vaginalis is the causative agent of one of the most widespread sexually transmitted diseases in the world. The adhesion of the parasite to the vaginal epithelial cells is mediated by specific proteins and by a complex glycan structure, the lipoglycan (TvLG), which covers the pathogen surface. L-rhamnose is an important component of TvLG, comprising up to 40% of the monosaccharides. Thus, the inhibition of its production could lead to a severe alteration in the TvLG structure, making the L-rhamnose biosynthetic pathway an attractive pharmacologic target. We report the identification and characterization of the first committed and limiting step of the L-rhamnose biosynthetic pathway, UDP-D-glucose 4,6-dehydratase (UGD, EC 4.2.1.76). The enzyme shows a strong preference for UDP-D-glucose compared to dTDP-D-glucose; we propose that the mechanism underlying the higher affinity for the UDP-bound substrate is mediated by the differential recognition of ribose versus the deoxyribose of the nucleotide moiety. The identification of the enzymes responsible for the following steps of the L-rhamnose pathway (epimerization and reduction) was more elusive. However, sequence analyses suggest that in T. vaginalis L-rhamnose synthesis proceeds through a mechanism different from the typical eukaryotic pathways, displaying intermediate features between the eukaryotic and prokaryotic pathways and involving separate enzymes for the epimerase and reductase activities, as observed in bacteria. Altogether, these results form the basis for a better understanding of the formation of the complex glycan structures on TvLG and the possible use of L-rhamnose biosynthetic enzymes for the development of selective inhibitors.
Asunto(s)
Ramnosa , Trichomonas vaginalis , Femenino , Humanos , Ramnosa/química , Vías Biosintéticas , Glucosa , Hidroliasas/metabolismo , Uridina Difosfato/metabolismoRESUMEN
The BQ.1 SARS-CoV-2 variant, also known as Cerberus, is one of the most recent Omicron descendant lineages. Compared to its direct progenitor BA.5, BQ.1 has some additional spike mutations in some key antigenic sites, which confer further immune escape ability over other circulating lineages. In such a context, here, we perform a genome-based survey aimed at obtaining a complete-as-possible nuance of this rapidly evolving Omicron subvariant. Genetic data suggest that BQ.1 represents an evolutionary blind background, lacking the rapid diversification that is typical of a dangerous lineage. Indeed, the evolutionary rate of BQ.1 is very similar to that of BA.5 (7.6 × 10-4 and 7 × 10-4 subs/site/year, respectively), which has been circulating for several months. The Bayesian Skyline Plot reconstruction indicates a low level of genetic variability, suggesting that the peak was reached around 3 September 2022. Concerning the affinity for ACE2, structure analyses (also performed by comparing the properties of BQ.1 and BA.5 RBD) indicate that the impact of the BQ.1 mutations may be modest. Likewise, immunoinformatic analyses showed moderate differences between the BQ.1 and BA5 potential B-cell epitopes. In conclusion, genetic and structural analyses on SARS-CoV-2 BQ.1 suggest no evidence of a particularly dangerous or high expansion capability. Genome-based monitoring must continue uninterrupted for a better understanding of its descendants and all other lineages.