Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(6): 1100-1113, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38733992

RESUMEN

Splicing-based transcriptome-wide association studies (splicing-TWASs) of breast cancer have the potential to identify susceptibility genes. However, existing splicing-TWASs test the association of individual excised introns in breast tissue only and thus have limited power to detect susceptibility genes. In this study, we performed a multi-tissue joint splicing-TWAS that integrated splicing-TWAS signals of multiple excised introns in each gene across 11 tissues that are potentially relevant to breast cancer risk. We utilized summary statistics from a meta-analysis that combined genome-wide association study (GWAS) results of 424,650 women of European ancestry. Splicing-level prediction models were trained in GTEx (v.8) data. We identified 240 genes by the multi-tissue joint splicing-TWAS at the Bonferroni-corrected significance level; in the tissue-specific splicing-TWAS that combined TWAS signals of excised introns in genes in breast tissue only, we identified nine additional significant genes. Of these 249 genes, 88 genes in 62 loci have not been reported by previous TWASs, and 17 genes in seven loci are at least 1 Mb away from published GWAS index variants. By comparing the results of our splicing-TWASs with previous gene-expression-based TWASs that used the same summary statistics and expression prediction models trained in the same reference panel, we found that 110 genes in 70 loci that are identified only by the splicing-TWASs. Our results showed that for many genes, expression quantitative trait loci (eQTL) did not show a significant impact on breast cancer risk, whereas splicing quantitative trait loci (sQTL) showed a strong impact through intron excision events.


Asunto(s)
Neoplasias de la Mama , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Empalme del ARN , Transcriptoma , Humanos , Neoplasias de la Mama/genética , Femenino , Empalme del ARN/genética , Intrones/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Perfilación de la Expresión Génica
2.
Cancer Res Commun ; 3(6): 1104-1112, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37377609

RESUMEN

Previous studies suggest associations of metabolic syndromes with breast cancer prognosis, yet the evidence is mixed. In recent years, the maturation of genome-wide association study findings has led to the development of polygenic scores (PGS) for many common traits, making it feasible to use Mendelian randomization to examine associations between metabolic traits and breast cancer outcomes. In the Pathways Study of 3,902 patients and a median follow-up time of 10.5 years, we adapted a Mendelian randomization approach to calculate PGS for 55 metabolic traits and tested their associations with seven survival outcomes. Multivariable Cox proportional hazards models were used to derive HRs and 95% confidence intervals (CI) with adjustment for covariates. The highest tertile (T3) of PGS for cardiovascular disease was associated with shorter overall survival (HR = 1.34, 95% CI = 1.11-1.61) and second primary cancer-free survival (HR = 1.31, 95% CI = 1.12-1.53). PGS for hypertension (T3) was associated with shorter overall survival (HR = 1.20, 95% CI = 1.00-1.43), second primary cancer-free survival (HR = 1.24, 95% CI = 1.06-1.45), invasive disease-free survival (HR = 1.18, 95% CI = 1.01-1.38), and disease-free survival (HR = 1.21, 95% CI = 1.04-1.39). PGS for serum cystatin C levels (T3) was associated with longer disease-free survival (HR = 0.82, 95% CI = 0.71-0.95), breast event-free survival (HR = 0.74, 95% CI = 0.61-0.91), and breast cancer-specific survival (HR = 0.72, 95% CI = 0.54-0.95). The above associations were significant at a nominal P < 0.05 level but not after correcting for multiple testing (Bonferroni P < 0.0009). Our analyses revealed notable associations of PGS for cardiovascular disease, hypertension, and cystatin C levels with breast cancer survival outcomes. These findings implicate metabolic traits in breast cancer prognosis. Significance: To our knowledge, this is the largest study of PGS for metabolic traits with breast cancer prognosis. The findings revealed significant associations of PGS for cardiovascular disease, hypertension, and cystatin C levels with several breast cancer survival outcomes. These findings implicate an underappreciated role of metabolic traits in breast cancer prognosis that would warrant further exploration.


Asunto(s)
Neoplasias de la Mama , Enfermedades Cardiovasculares , Hipertensión , Humanos , Femenino , Neoplasias de la Mama/genética , Análisis de la Aleatorización Mendeliana , Cistatina C , Estudio de Asociación del Genoma Completo
3.
Am J Hum Genet ; 110(6): 950-962, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37164006

RESUMEN

Genome-wide association studies (GWASs) have identified more than 200 genomic loci for breast cancer risk, but specific causal genes in most of these loci have not been identified. In fact, transcriptome-wide association studies (TWASs) of breast cancer performed using gene expression prediction models trained in breast tissue have yet to clearly identify most target genes. To identify candidate genes, we performed a GWAS analysis in a breast cancer dataset from UK Biobank (UKB) and combined the results with the GWAS results of the Breast Cancer Association Consortium (BCAC) by a meta-analysis. Using the summary statistics from the meta-analysis, we performed a joint TWAS analysis that combined TWAS signals from multiple tissues. We used expression prediction models trained in 11 tissues that are potentially relevant to breast cancer from the Genotype-Tissue Expression (GTEx) data. In the GWAS analysis, we identified eight loci distinct from those reported previously. In the TWAS analysis, we identified 309 genes at 108 genomic loci to be significantly associated with breast cancer at the Bonferroni threshold. Of these, 17 genes were located in eight regions that were at least 1 Mb away from published GWAS hits. The remaining TWAS-significant genes were located in 100 known genomic loci from previous GWASs of breast cancer. We found that 21 genes located in known GWAS loci remained statistically significant after conditioning on previous GWAS index variants. Our study provides insights into breast cancer genetics through mapping candidate target genes in a large proportion of known GWAS loci and discovering multiple new loci.


Asunto(s)
Neoplasias de la Mama , Transcriptoma , Humanos , Femenino , Transcriptoma/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Neoplasias de la Mama/genética , Sitios de Carácter Cuantitativo/genética , Polimorfismo de Nucleótido Simple/genética
4.
Nat Commun ; 12(1): 4198, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34234117

RESUMEN

Our study describes breast cancer risk loci using a cross-ancestry GWAS approach. We first identify variants that are associated with breast cancer at P < 0.05 from African ancestry GWAS meta-analysis (9241 cases and 10193 controls), then meta-analyze with European ancestry GWAS data (122977 cases and 105974 controls) from the Breast Cancer Association Consortium. The approach identifies four loci for overall breast cancer risk [1p13.3, 5q31.1, 15q24 (two independent signals), and 15q26.3] and two loci for estrogen receptor-negative disease (1q41 and 7q11.23) at genome-wide significance. Four of the index single nucleotide polymorphisms (SNPs) lie within introns of genes (KCNK2, C5orf56, SCAMP2, and SIN3A) and the other index SNPs are located close to GSTM4, AMPD2, CASTOR2, and RP11-168G16.2. Here we present risk loci with consistent direction of associations in African and European descendants. The study suggests that replication across multiple ancestry populations can help improve the understanding of breast cancer genetics and identify causal variants.


Asunto(s)
Población Negra/genética , Neoplasias de la Mama/genética , Predisposición Genética a la Enfermedad , Sitios de Carácter Cuantitativo , Población Blanca/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Intrones , Polimorfismo de Nucleótido Simple
5.
PLoS One ; 15(9): e0236209, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32986714

RESUMEN

The genetic risk for prostate cancer has been governed by a few rare variants with high penetrance and over 150 commonly occurring variants with lower impact on risk; however, most of these variants have been identified in studies containing exclusively European individuals. People of non-European ancestries make up less than 15% of prostate cancer GWAS subjects. Across the globe, incidence of prostate cancer varies with population due to environmental and genetic factors. The discrepancy between disease incidence and representation in genetics highlights the need for more studies of the genetic risk for prostate cancer across diverse populations. To better understand the genetic risk for prostate cancer across diverse populations, we performed PrediXcan and GWAS in a case-control study of 4,769 self-identified African American (2,463 cases and 2,306 controls), 2,199 Japanese American (1,106 cases and 1,093 controls), and 2,147 Latin American (1,081 cases and 1,066 controls) individuals from the Multiethnic Genome-wide Scan of Prostate Cancer. We used prediction models from 46 tissues in GTEx version 8 and five models from monocyte transcriptomes in the Multi-Ethnic Study of Atherosclerosis. Across the three populations, we predicted 19 gene-tissue pairs, including five unique genes, to be significantly (lfsr < 0.05) associated with prostate cancer. One of these genes, NKX3-1, replicated in a larger European study. At the SNP level, 110 SNPs met genome-wide significance in the African American study while 123 SNPs met significance in the Japanese American study. Fine mapping revealed three significant independent loci in the African American study and two significant independent loci in the Japanese American study. These identified loci confirm findings from previous GWAS of prostate cancer in diverse populations while PrediXcan-identified genes suggest potential new directions for prostate cancer research in populations across the globe.


Asunto(s)
Neoplasias de la Próstata/genética , Transcriptoma , Negro o Afroamericano/genética , Asiático/genética , Estudios de Casos y Controles , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Hispánicos o Latinos/genética , Proteínas de Homeodominio/genética , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Neoplasias de la Próstata/epidemiología , Neoplasias de la Próstata/etnología , Factores de Transcripción/genética
6.
PeerJ ; 7: e7778, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31579629

RESUMEN

In the past 15 years, genome-wide association studies (GWAS) have provided novel insight into the genetic architecture of various complex traits; however, this insight has been primarily focused on populations of European descent. This emphasis on European populations has led to individuals of recent African descent being grossly underrepresented in the study of genetics. With African Americans making up less than 2% of participants in neuropsychiatric GWAS, this discrepancy is magnified in diseases such as schizophrenia and bipolar disorder. In this study, we performed GWAS and the gene-based association method PrediXcan for schizophrenia (n = 2,256) and bipolar disorder (n = 1,019) in African American cohorts. In our PrediXcan analyses, we identified PRMT7 (P = 5.5 × 10-6, local false sign rate = 0.12) as significantly associated with schizophrenia following an adaptive shrinkage multiple testing adjustment. This association with schizophrenia was confirmed in the much larger, predominantly European, Psychiatric Genomics Consortium. In addition to the PRMT7 association with schizophrenia, we identified rs10168049 (P = 1.0 × 10-6) as a potential candidate locus for bipolar disorder with highly divergent allele frequencies across populations, highlighting the need for diversity in genetic studies.

7.
Free Radic Biol Med ; 133: 295-309, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30553971

RESUMEN

Increasing data implicate iron accumulation in tumorigenesis of the kidney, particularly the clear cell renal cell carcinoma (ccRCC) subtype. The von Hippel Lindau (VHL)/hypoxia inducible factor-α (HIF-α) axis is uniquely dysregulated in ccRCC and is a major regulator and regulatory target of iron metabolism, yet the role of iron in ccRCC tumorigenesis and its potential interplay with VHL inactivation remains unclear. We investigated whether ccRCC iron accumulation occurs due to increased cell dependency on iron for growth and survival as a result of VHL inactivation. Free iron levels were compared between four VHL-mutant ccRCC cell lines (786-0, A704, 769-P, RCC4) and two benign renal tubule epithelial cell lines (RPTEC, HRCEp) using the Phen Green SK fluorescent iron stain. Intracellular iron deprivation was achieved using two clinical iron chelator drugs, deferasirox (DFX) and deferoxamine (DFO), and chelator effects were measured on cell line growth, cell cycle phase, apoptosis, HIF-1α and HIF-2α protein levels and HIF-α transcriptional activity based on expression of target genes CA9, OCT4/POU5F1 and PDGFß/PDGFB. Similar assays were performed in VHL-mutant ccRCC cells with and without ectopic wild-type VHL expression. Baseline free iron levels were significantly higher in ccRCC cell lines than benign renal cell lines. DFX depleted cellular free iron more rapidly than DFO and led to greater growth suppression of ccRCC cell lines (>90% at ~30-150 µM) than benign renal cell lines (~10-50% at up to 250 µM). Similar growth responses were observed using DFO, with the exception that a prolonged treatment duration was necessary to deplete cellular iron adequately for differential growth suppression of the less susceptible A704 ccRCC cell line relative to benign renal cell lines. Apoptosis and G1-phase cell cycle arrest were identified as potential mechanisms of chelator growth suppression based on their induction in ccRCC cell lines but not benign renal cell lines. Iron chelation in ccRCC cells but not benign renal cells suppressed HIF-1α and HIF-2α protein levels and transcriptional activity, and the degree and timing of HIF-2α suppression correlated with the onset of apoptosis. Restoration of wild-type VHL function in ccRCC cells was sufficient to prevent chelator-induced apoptosis and G1 cell cycle arrest, indicating that ccRCC susceptibility to iron deprivation is VHL inactivation-dependent. In conclusion, ccRCC cells are characterized by high free iron levels and a cancer-specific dependency on iron for HIF-α overexpression, cell cycle progression and apoptotic escape. This iron dependency is introduced by VHL inactivation, revealing a novel interplay between VHL/HIF-α dysregulation and ccRCC iron metabolism. Future study is warranted to determine if iron deprivation using chelator drugs provides an effective therapeutic strategy for targeting HIF-2α and suppressing tumor progression in ccRCC patients.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Carcinoma de Células Renales/tratamiento farmacológico , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Hierro/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Apoptosis/efectos de los fármacos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Quelantes del Hierro/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA