Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(18)2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39339509

RESUMEN

In this study, a new and straightforward process for the preparation of budesonide 21-phosphate (Bud-21P) and its disodium salt (Bud-21P-Na2) is described. The method results in a yield comparable to those obtained by diphosphoryl chloride, but it is more manageable, less expensive, and safer. The new compounds are characterized by better water solubility compared to the parent compound. Moreover, they have been evaluated for their anti-inflammatory activity and the obtained results clearly evidence that Bud-21P and Bud-21P-Na2 retained anti-inflammatory activity like the parent compound budesonide (Bud) in mice with cutaneous induced edema.


Asunto(s)
Antiinflamatorios , Budesonida , Modelos Animales de Enfermedad , Inflamación , Animales , Ratones , Budesonida/farmacología , Budesonida/síntesis química , Budesonida/uso terapéutico , Antiinflamatorios/síntesis química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Inflamación/tratamiento farmacológico , Inflamación/inducido químicamente , Edema/tratamiento farmacológico , Edema/inducido químicamente , Solubilidad
2.
ACS Pharmacol Transl Sci ; 7(7): 1996-2005, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39022351

RESUMEN

The debilitating neurodegenerative disease known as amyotrophic lateral sclerosis (ALS) is characterized by the progressive loss of motor neurons (MNs) in the brain, spinal cord, and motor cortex. The ALS neuroinflammatory component is being characterized and includes the overexpression of mediators, such as inducible nitric oxide synthase (iNOS) and tumor necrosis factor-α (TNF-α). Currently, there are no effective treatments for ALS. Indeed, riluzole, an N-methyl-D-aspartate (NMDA) glutamate receptor blocker, and edaravone, a reactive oxygen species (ROS) scavenger, are currently the sole two medications approved for ALS treatment. However, their efficacy in extending life expectancy typically amounts to only a few months. In order to improve the medicaments for the treatment of neurodegenerative diseases, preferably ALS, novel substituted 2-methyl-3-indolylacetic derivatives (compounds II-IV) were developed by combining the essential parts of two small molecules, namely, the opioids containing a 4-piperidinyl ring with indomethacin, previously shown to be efficacious in different experimental models of neuroinflammation. The synthesized compounds were evaluated for their potential capability of slowing down neurodegeneration associated with ALS progression in preclinical models of the disease in vitro and in vivo. Notably, we produced data to demonstrate that the treatment with the newly synthesized compound III: (1) prevented the upregulation of TNF-α observed in BV-2 microglial cells exposed to the toxin lipopolysaccharides (LPS), (2) preserved SHSY-5Y cell survival exposed to ß-N-methylamino-l-alanine (L-BMAA) neurotoxin, and (3) mitigated motor symptoms and improved survival rate of SOD1G93A ALS mice. In conclusion, the findings of the present work support the potential of the synthesized indolylacetic derivatives II-IV in ALS treatment. Indeed, in the attempt to realize an association between two active molecules, we assumed that the combination of the indispensable moieties of two small molecules (the opioids containing a 4-piperidinyl ring with the FANS indomethacin) might lead to new medicaments potentially useful for the treatment of amyotrophic lateral sclerosis.

3.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000122

RESUMEN

Among the various drug discovery methods, a very promising modern approach consists in designing multi-target-directed ligands (MTDLs) able to modulate multiple targets of interest, including the pathways where hydrogen sulfide (H2S) is involved. By incorporating an H2S donor moiety into a native drug, researchers have been able to simultaneously target multiple therapeutic pathways, resulting in improved treatment outcomes. This review gives the reader some pills of successful multi-target H2S-donating molecules as worthwhile tools to combat the multifactorial nature of complex disorders, such as inflammatory-based diseases and cancer, as well as cardiovascular, metabolic, and neurodegenerative disorders.


Asunto(s)
Sulfuro de Hidrógeno , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Humanos , Animales , Ligandos , Descubrimiento de Drogas/métodos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo
4.
Eur J Med Chem ; 275: 116636, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38944936

RESUMEN

Asthma is a major noncommunicable disease, affecting both children and adults, and represents one of the major causes leading to high health care costs due to the need for chronic pharmacological treatments. The standard gold therapy of inflammation in asthmatic patients involves the use of glucocorticoids even if their chronic use is often related to serious adverse effects. Growing evidence suggests the biological relevance of hydrogen sulfide (H2S) in the pathogenesis of airway diseases. Hence, aiming to associate the beneficial effects of steroidal anti-inflammatory drugs (SAIDs) to H2S biological activity, we designed and synthesized novel multi-target molecules by chemically combining a group of glucocorticoids, usually employed in asthma treatment, with an isothiocyanate moiety, well-known for its H2S releasing properties. Firstly, the synthesized compounds have been screened for their H2S-releasing profile using an amperometric approach and for their in vitro effects on the degranulation process, using RBL-2H3 cell line. The physicochemical profile, in terms of solubility, chemical and enzymatic stability of the newly hybrid molecules, has been assessed at different physiological pH values and in esterase-rich medium (bovine serum albumin, BSA). The selected compound 5c, through both its corticosteroid and H2S releasing component, has been evaluated in vivo in experimental model of asthma. The compound 5c inhibited in vivo all asthma features with a significative effect on the restoration of pulmonary structure and reduction of lung inflammation.


Asunto(s)
Asma , Isotiocianatos , Asma/tratamiento farmacológico , Animales , Isotiocianatos/química , Isotiocianatos/farmacología , Isotiocianatos/síntesis química , Ratas , Corticoesteroides/farmacología , Corticoesteroides/química , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/química , Sulfuro de Hidrógeno/farmacología , Estructura Molecular , Relación Estructura-Actividad , Antiasmáticos/farmacología , Antiasmáticos/química , Antiasmáticos/síntesis química , Antiasmáticos/uso terapéutico , Relación Dosis-Respuesta a Droga , Humanos , Masculino , Línea Celular
5.
Molecules ; 29(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38611877

RESUMEN

4-Nitro and 7-nitro propranolol have been recently synthesized and characterized by us. (±)-4-NO2-propranolol has been shown to act as a selective antagonist of 6-nitrodopamine (6-ND) receptors in the right atrium of rats. As part of our follow-up to this study, herein, we describe the first synthesis of (±)-3-nitroatenolol as a probe to evaluate the potential nitration of atenolol by endothelium. Chiral chromatography was used to produce pure enantiomers. By using Riguera's method, which is based on the sign distribution of ΔδH, the absolute configuration of the secondary alcohol was determined.

6.
Front Pharmacol ; 15: 1348876, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38645555

RESUMEN

Introduction: The human umbilical artery (HUA), rat-isolated right atrium, and rat-isolated vas deferens present a basal release of 6-nitrodopamine (6-ND). The basal release of 6-ND from these tissues was significantly decreased (but not abolished) when the tissues were pre-incubated with Nω-nitro-L-arginine methyl ester (L-NAME). Methods: In this study, the effect of the pharmacological modulation of the redox environment on the basal release of 6-ND was investigated. The basal release of 6-ND was measured using Liquid chromatography with tandem mass spectrometry (LC-MS/MS). Results and Discussion: Pre-incubation (30 min) of the tissues with GKT137831 (1 µM) caused a significant increase in the basal release of 6-ND from all tissues. In the HUA, pre-incubation with diphenyleneiodonium (DPI) (100 µM) also caused significant increases in the basal release of 6-ND. Preincubation of the HUA with hydrogen peroxide (H2O2) (100 µM) increased 6-ND basal release, whereas pre-incubation with catalase (1,000 U/mL) significantly decreased it. Pre-incubation of the HUA with superoxide dismutase (SOD) (250 U/mL; 30 min) also significantly increased the basal release of 6-ND. Preincubation of the HUA with either allopurinol (100 µM) or uric acid (1 mM) had no effect on the basal release of 6-ND. Pre-treatment of the HUA with L-NAME (100 µM) prevented the increase in the basal release of 6-ND induced by GKT137831, diphenyleneiodonium, and H2O2. The results obtained indicate a major role of endogenous H2O2 and peroxidases as modulators of 6- ND biosynthesis/release and a lack of peroxynitrite contribution.

7.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37895954

RESUMEN

Arylpiperazines represent one of the most important classes of 5-HT1AR ligands and have attracted considerable interests for their versatile properties in chemistry and pharmacology, leading to the research of new derivatives that has been focused on the modification of one or more portions of such pharmacophore. An efficient protocol for the synthesis of novel thiazolinylphenyl-piperazines (2a-c) and the corresponding acetylated derivatives was used (3a-c). The new compounds were tested for their functional activity and affinity at 5-HT1A receptors, showing an interesting affinity profile with a Ki value of 412 nM for compound 2b. The cytotoxic activity of novel thiazolinylphenyl-piperazines (2a-c) and corresponding N-acetyl derivatives (3a-c) against human prostate and breast cancer cell lines (LNCAP, DU-145 and PC-3, MCF-7, SKBR-3 and MDA-MB231) was investigated according to the procedure described in the literature. The reported data showed a cytotoxic effect for 2a-c and 3a-c compounds (IC50 values ranging from 15 µM to 73 µM) on the investigated cancer cell lines, with no effect on noncancer cells. Future studies will be aimed to investigate the mechanism of action and therapeutic prospects of these new scaffolds.

8.
Food Chem ; 416: 135642, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36871506

RESUMEN

The levels of bisphenol A (BPA), bisphenol B (BPB), bisphenol F (BPF) and bisphenol S (BPS) were monitored in twenty-three samples of canned legumes from popular brands marketed in Italy. BPB, BPS and BPF were not detected in any samples, while BPA was found in 91 % of the samples in the concentration range 1.51-21.22 ng/mL. The risk associated with the human exposure to BPA was categorized using the Rapid Assessment of Contaminant Exposure (RACE) tool promoted by the European Food Safety Authority (EFSA). The results showed that there is no risk for any of the population groups when the current TDI value for BPA of 4 µg/kg bw/day was used as toxicological reference point. In contrast, using the new TDI value for BPA of 0.04 ng/kg bw/day, proposed by EFSA in December 2021, the existing risk was found to be real for all population groups.


Asunto(s)
Fabaceae , Humanos , Verduras , Compuestos de Bencidrilo/análisis
9.
Foods ; 11(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36496660

RESUMEN

The consumption of plant-based beverages as an alternative to cow's milk has recently gained vast attention worldwide. The aim of this work is to monitor the intake of Bisphenol A (BPA), Bisphenol B (BPB) and Bisphenol S (BPS) in the Italian population through the consumption of these foodstuffs. Specifically, the development and validation of an analytical procedure for the quantitative determination of the analytes by liquid chromatography coupled to tandem mass spectrometry was reported. Thirty-four samples of plant-based beverages (soya, coconut, almond, oats and rice) of popular brands marketed in Italy were analyzed. BPA was found in 32% of the samples, while BPB was found in 3% of the samples. The risk assessment using the Rapid Assessment of Contaminant Exposure (RACE) tool demonstrated that there was no risk for all population groups, when using the current Tolerable Daily Intake (TDI) of 4 ng/kg body weight (bw)/day as a toxicological reference point. In contrast, using the new temporary TDI of 0.04 ng/kg bw/day, the existing risk was found to be real for all population groups. If this value were to become final, even more attention would have to be paid to the possible presence of BPA in food to protect consumer health.

10.
Pharmacol Res ; 186: 106536, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36332810

RESUMEN

Adrenergic ß2-agonists represent a mainstay in asthma management. Their chronic use has been associated with decreased bronchoprotection and rebound hyperresponsiveness. Here we investigate on the possible therapeutic advantage of a pharmacological association of ß2-agonists with montelukast, a highly selective leukotriene receptor antagonist, in modulating bronchial reactivity and controlling asthma features. The study has been conducted in vitro and in vivo and also takes advantage of the synthesis of a salt that gave us the possibility to simultaneously administer in vivo formoterol and montelukast (MFS). In vitro studies demonstrate that montelukast (1) preserves ß2-agonist response in isolated bronchi by preventing homologous ß2-adrenoceptor desensitization; (2) reduces desensitization by modulating ß2-receptor translocation in bronchial epithelial cells. In vivo studies demonstrate that sensitized mice receiving formoterol or montelukast display a significant reduction in airway hyperresponsiveness, but the ß2-agonist relaxing response is still impaired. Allergen challenge causes ß2 heterologous desensitization that is further increased by treatment in vivo with formoterol. Conversely MFS not only inhibits airway hyperresponsiveness but it rescues the ß2-agonist response. Histological analysis confirms the functional data, demonstrating an enhanced therapeutic efficiency of MSF in controlling also pulmonary metaplasia and lung inflammation. MFS is efficacious also when sensitized mice received the drug by local administration. In conclusion, the data obtained evidenced a therapeutic advantage in the association of ß2-agonists with montelukast in the control of asthma-like features and a better rescue bronchodilation response to ß2-agonists.


Asunto(s)
Agonistas Adrenérgicos beta , Asma , Ratones , Animales , Fumarato de Formoterol/farmacología , Fumarato de Formoterol/uso terapéutico , Agonistas Adrenérgicos beta/uso terapéutico , Asma/tratamiento farmacológico , Acetatos/farmacología , Acetatos/uso terapéutico
11.
Int J Mol Sci ; 23(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36430281

RESUMEN

Glaucoma is a group of eye diseases consisting of optic nerve damage with corresponding loss of field vision and blindness. Hydrogen sulfide (H2S) is a gaseous neurotransmitter implicated in various pathophysiological processes. It is involved in the pathological mechanism of glaucomatous neuropathy and exerts promising effects in the treatment of this disease. In this work, we designed and synthetized new molecular hybrids between antiglaucoma drugs and H2S donors to combine the pharmacological effect of both moieties, providing a heightened therapy. Brinzolamide, betaxolol and brimonidine were linked to different H2S donors. The H2S-releasing properties of the new compounds were evaluated in a phosphate buffer solution by the amperometric approach, and evaluated in human primary corneal epithelial cells (HCEs) by spectrofluorometric measurements. Experimental data showed that compounds 1c, 1d and 3d were the hybrids with the best properties, characterized by a significant and long-lasting production of the gasotransmitter both in the aqueous solution (in the presence of L-cysteine) and in the intracellular environment. Because, to date, the donation of H2S by antiglaucoma H2S donor hybrids using non-immortalized corneal cells has never been reported, these results pave the way to further investigation of the potential efficacy of the newly synthesized compounds.


Asunto(s)
Gasotransmisores , Glaucoma , Sulfuro de Hidrógeno , Humanos , Agentes Antiglaucoma , Betaxolol/farmacología , Betaxolol/uso terapéutico , Gasotransmisores/uso terapéutico , Glaucoma/tratamiento farmacológico , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/uso terapéutico
12.
Molecules ; 27(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36235029

RESUMEN

A new series of 5-norbornene-2-carboxamide derivatives was prepared and their affinities to the 5-HT1A, 5-HT2A, and 5-HT2C receptors were evaluated and compared to a previously synthesized series of derivatives characterized by exo-N-hydroxy-5-norbornene-2,3-dicarboximidenucleus, in order to identify selective ligands for the above-mentioned subtype receptors. Arylpiperazines represents one of the most important classes of 5-HT1AR ligands, and recent research concerning new derivatives has been focused on the modification of one or more portions of such pharmacophore. The combination of structural elements (heterocyclic nucleus, propyl chain and 4-substituted piperazine), known to be critical to the affinity to 5-HT1A receptors, and the proper selection of substituents led to compounds with high specificity and affinity towards serotoninergic receptors. The most active compounds were selected for further in vivo assays to determine their functional activity. Finally, to rationalize the obtained results, molecular docking studies were performed. The results of the pharmacological studies showed that Norbo-4 and Norbo-18 were the most active and promising derivatives for the serotonin receptor considered in this study.


Asunto(s)
Receptores de Serotonina , Serotonina , Ligandos , Simulación del Acoplamiento Molecular , Norbornanos/farmacología , Piperazina , Receptor de Serotonina 5-HT1A , Relación Estructura-Actividad
13.
BMC Cancer ; 22(1): 171, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35168555

RESUMEN

BACKGROUND: Serotonin (or 5-Hydroxytryptamine, 5-HT) signals in mammary gland becomes dysregulated in cancer, also contributing to proliferation, metastasis, and angiogenesis. Thus, the discovery of novel compounds targeting serotonin signaling may contribute to tailor new therapeutic strategies usable in combination with endocrine therapies. We have previously synthesized serotoninergic receptor ligands (SER) with high affinity and selectivity towards 5-HT2A and 5-HT2C receptors, the main mediators of mitogenic effect of serotonin in breast cancer (BC). Here, we investigated the effect of 10 SER on viability of MCF7, SKBR3 and MDA-MB231 BC cells and focused on their potential ability to affect Tamoxifen responsiveness in ER+ cells. METHODS: Cell viability has been assessed by sulforhodamine B assay. Cell cycle has been analyzed by flow cytometry. Gene expression of 5-HT receptors and Connective Tissue Growth Factor (CTGF) has been checked by RT-PCR; mRNA levels of CTGF and ABC transporters have been further measured by qPCR. Protein levels of 5-HT2C receptors have been analyzed by Western blot. All data were statistically analyzed using GraphPad Prism 7. RESULTS: We found that treatment with SER for 72 h reduced viability of BC cells. SER were more effective on MCF7 ER+ cells (IC50 range 10.2 µM - 99.2 µM) compared to SKBR3 (IC50 range 43.3 µM - 260 µM) and MDA-MB231 BC cells (IC50 range 91.3 µM - 306 µM). This was paralleled by accumulation of cells in G0/G1 phase of cell cycle. Next, we provided evidence that two ligands, SER79 and SER68, improved the effectiveness of Tamoxifen treatment in MCF7 cells and modulated the expression of CTGF, without affecting viability of MCF10A non-cancer breast epithelial cells. In a cell model of Tamoxifen resistance, SER68 also restored drug effect independently of CTGF. CONCLUSIONS: These results identified serotoninergic receptor ligands potentially usable in combination with Tamoxifen to improve its effectiveness on ER+ BC patients.


Asunto(s)
Antineoplásicos Hormonales/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Serotonina/metabolismo , Tamoxifeno/farmacología , Neoplasias de la Mama/metabolismo , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Resistencia a Antineoplásicos , Femenino , Humanos , Ligandos , Células MCF-7 , Receptores de Estrógenos/metabolismo , Transducción de Señal/efectos de los fármacos
14.
J Adv Res ; 35: 267-277, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35024201

RESUMEN

Introduction: Hydrogen sulfide (H2S) is a fundamental biological endogenous gas-mediator in the respiratory system. It regulates pivotal patho-physiological processes such as oxidative stress, pulmonary circulation, airway tone and inflammation. Objectives: We herein describe the design and synthesis of molecular hybrids obtained by the condensation of several corticosteroids with different hydrogen sulfide releasing moieties. Methods: All the molecules are characterized for their ability to release H2S both via amperometric approach and using a fluorescent probe. The chemical stability of the newly synthesized hybrid molecules has been investigated at differing pH values and in human serum. Results: Prednisone-TBZ hybrid (compound 7) was selected for further evaluations. The obtained results from the in vitro and in vivo studies clearly show evidence in favor of the anti-inflammatory properties of the released H2S. Conclusions: The protective effect on airway remodeling makes the hybrid Prednisone-TBZ (compound 7) as a promising therapeutic option in reducing allergic asthma symptoms and exacerbations.


Asunto(s)
Asma , Sulfuro de Hidrógeno , Corticoesteroides , Animales , Antiinflamatorios , Asma/tratamiento farmacológico , Modelos Animales de Enfermedad , Humanos , Ratones
15.
Molecules ; 28(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36615252

RESUMEN

We recently identified 6-nitrodopamine and other nitro-catecholamines (6-nitrodopa, 6-nitroadrenaline), indicating that the endothelium has the ability to nitrate the classical catecholamines (dopamine, noradrenaline, and adrenaline). In order to investigate whether drugs could be subject to the same nitration process, we synthesized 4-nitro- and 7-nitropropranolol as probes to evaluate the possible nitration of the propranolol by the endothelium. The separation of the enantiomers in very high yields and excellent enantiopurity was achieved by chiral HPLC. Finally, we used Riguera's method to determine the absolute configuration of the enantiomers, through double derivatization with MPA and NMR studies.


Asunto(s)
Catecolaminas , Propranolol , Espectroscopía de Resonancia Magnética , Estereoisomerismo , Cromatografía Líquida de Alta Presión/métodos
16.
Br J Pharmacol ; 179(8): 1679-1694, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34791641

RESUMEN

BACKGROUND AND PURPOSE: N-Acylethanolamine acid amidase (NAAA) is a lysosomal enzyme accountable for the breakdown of N-acylethanolamines (NAEs) and its pharmacological inhibition has beneficial effects in inflammatory conditions. The knowledge of NAAA in cancer is fragmentary with an unclarified mechanism, whereas its contribution to colorectal cancer (CRC) is unknown to date. EXPERIMENTAL APPROACH: CRC xenograft and azoxymethane models were used to assess the in vivo effect of NAAA inhibition. Further, the tumour secretome was evaluated by an oncogenic array, CRC cell lines were used for in vitro studies, cell cycle was analysed by cytofluorimetry, NAAA was knocked down with siRNA, human biopsies were obtained from surgically resected CRC patients, gene expression was measured by RT-PCR and NAEs were measured by LC-MS. KEY RESULTS: The NAAA inhibitor AM9053 reduced CRC xenograft tumour growth and counteracted tumour development in the azoxymethane model. NAAA inhibition affected the composition of the tumour secretome inhibiting the expression of EGF family members. In CRC cells, AM9053 reduced proliferation with a mechanism mediated by PPAR-α and TRPV1. AM9053 induced cell cycle arrest in the S phase associated with cyclin A2/CDK2 down-regulation. NAAA knock-down mirrored the effects of NAAA inhibition with AM9053. NAAA expression was down-regulated in human CRC tissues, with a consequential augmentation of NAE levels and dysregulation of some of their targets. CONCLUSION AND IMPLICATIONS: Our results show novel data on the functional importance of NAAA in CRC progression and the mechanism involved. We propose that this enzyme is a valid drug target for the treatment of CRC growth and development.


Asunto(s)
Neoplasias Colorrectales , Etanolaminas , Amidohidrolasas , Azoximetano , Neoplasias Colorrectales/tratamiento farmacológico , Etanolaminas/metabolismo , Humanos
17.
Biomolecules ; 11(12)2021 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-34944543

RESUMEN

Hydrogen sulfide (H2S) is a ubiquitous gaseous signaling molecule that has an important role in many physiological and pathological processes in mammalian tissues, with the same importance as two others endogenous gasotransmitters such as NO (nitric oxide) and CO (carbon monoxide). Endogenous H2S is involved in a broad gamut of processes in mammalian tissues including inflammation, vascular tone, hypertension, gastric mucosal integrity, neuromodulation, and defense mechanisms against viral infections as well as SARS-CoV-2 infection. These results suggest that the modulation of H2S levels has a potential therapeutic value. Consequently, synthetic H2S-releasing agents represent not only important research tools, but also potent therapeutic agents. This review has been designed in order to summarize the currently available H2S donors; furthermore, herein we discuss their preparation, the H2S-releasing mechanisms, and their -biological applications.


Asunto(s)
Descubrimiento de Drogas , Gasotransmisores/farmacología , Sulfuro de Hidrógeno/farmacología , Animales , Bencenosulfonatos/administración & dosificación , Bencenosulfonatos/metabolismo , Bencenosulfonatos/farmacología , Bencenosulfonatos/uso terapéutico , Química Farmacéutica , Gasotransmisores/administración & dosificación , Gasotransmisores/metabolismo , Gasotransmisores/uso terapéutico , Humanos , Sulfuro de Hidrógeno/administración & dosificación , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/uso terapéutico , Morfolinas/administración & dosificación , Morfolinas/metabolismo , Morfolinas/farmacología , Morfolinas/uso terapéutico , Naproxeno/administración & dosificación , Naproxeno/análogos & derivados , Naproxeno/metabolismo , Naproxeno/farmacología , Naproxeno/uso terapéutico , Compuestos Organotiofosforados/administración & dosificación , Compuestos Organotiofosforados/metabolismo , Compuestos Organotiofosforados/farmacología , Compuestos Organotiofosforados/uso terapéutico
18.
J Med Chem ; 64(24): 17901-17919, 2021 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-34845907

RESUMEN

Due to the neuroprotective role of the Na+/Ca2+ exchanger (NCX) isoforms NCX1 and NCX3, we synthesized novel benzodiazepinone derivatives of the unique NCX activator Neurounina-1, named compounds 1-19. The derivatives are characterized by a benzodiazepinonic nucleus linked to five- or six-membered cyclic amines via a methylene, ethylene, or acetyl spacer. The compounds have been screened on NCX1/NCX3 isoform activities by a high-throughput screening approach, and the most promising were characterized by patch-clamp electrophysiology and Fura-2AM video imaging. We identified two novel modulators of NCX: compound 4, inhibiting NCX1 reverse mode, and compound 14, enhancing NCX1 and NCX3 activity. Compound 1 displayed neuroprotection in two preclinical models of brain ischemia. The analysis of the conformational and steric features led to the identification of the molecular volume required for selective NCX1 activation for mixed NCX1/NCX3 activation or for NCX1 inhibition, providing the first prototypal model for the design of optimized isoform modulators.


Asunto(s)
Benzodiazepinonas/farmacología , Fármacos Neuroprotectores/farmacología , Isoformas de Proteínas/antagonistas & inhibidores , Pirrolidinas/química , Intercambiador de Sodio-Calcio/antagonistas & inhibidores , Animales , Benzodiazepinonas/química , Diseño de Fármacos , Isoformas de Proteínas/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Relación Estructura-Actividad
19.
Biomed Pharmacother ; 143: 112111, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34481380

RESUMEN

The Na+/Ca2+ exchanger NCX3 is an important regulator of sodium and calcium homeostasis in oligodendrocyte lineage. To date, no information is available on the effects resulting from prolonged exposure to NCX3 blockers and subsequent drug washout in oligodendroglia. Here, we investigated, by means of biochemical, morphological and functional analyses, the pharmacological effects of the NCX3 inhibitor, the 5-amino-N-butyl-2-(4-ethoxyphenoxy)-benzamide hydrochloride (BED), on NCXs expression and activity, as well as intracellular [Na+]i and [Ca2+]i levels, during treatment and following drug washout both in human MO3.13 oligodendrocytes and rat primary oligodendrocyte precursor cells (OPCs). BED exposure antagonized NCX activity, induced OPCs proliferation and [Na+]i accumulation. By contrast, 2 days of BED washout after 4 days of treatment significantly upregulated low molecular weight NCX3 proteins, reversed NCX activity, and increased intracellular [Ca2+]i. This BED-free effect was accompanied by an upregulation of NCX3 expression in oligodendrocyte processes and accelerated expression of myelin markers in rat primary oligodendrocytes. Collectively, our findings show that the pharmacological inhibition of the NCX3 exchanger with BED blocker maybe followed by a rebound increase in NCX3 expression and reversal activity that accelerate myelin sheet formation in oligodendrocytes. In addition, they indicate that a particular attention should be paid to the use of NCX inhibitors for possible rebound effects, and suggest that further studies will be necessary to investigate whether selective pharmacological modulation of NCX3 exchanger may be exploited to benefit demyelination and remyelination in demyelinating diseases.


Asunto(s)
Benzamidas/farmacología , Vaina de Mielina/metabolismo , Oligodendroglía/efectos de los fármacos , Intercambiador de Sodio-Calcio/antagonistas & inhibidores , Animales , Calcio/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , Humanos , Oligodendroglía/metabolismo , Ratas Wistar , Sodio/metabolismo , Intercambiador de Sodio-Calcio/genética , Intercambiador de Sodio-Calcio/metabolismo , Factores de Tiempo
20.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34445567

RESUMEN

S1P is the final product of sphingolipid metabolism, which interacts with five widely expressed GPCRs (S1P1-5). Increasing numbers of studies have indicated the importance of S1P3 in various pathophysiological processes. Recently, we have identified a pepducin (compound KRX-725-II) acting as an S1P3 receptor antagonist. Here, aiming to optimize the activity and selectivity profile of the described compound, we have synthesized a series of derivatives in which Tyr, in position 4, has been substituted with several natural aromatic and unnatural aromatic and non-aromatic amino acids. All the compounds were evaluated for their ability to inhibit vascular relaxation induced by KRX-725 (as S1P3 selective pepducin agonist) and KRX-722 (an S1P1-selective pepducin agonist). Those selective towards S1P3 (compounds V and VII) were also evaluated for their ability to inhibit skeletal muscle fibrosis. Finally, molecular dynamics simulations were performed to derive information on the preferred conformations of selective and unselective antagonists.


Asunto(s)
Péptidos de Penetración Celular/farmacología , Fibrosis/tratamiento farmacológico , Músculo Esquelético/efectos de los fármacos , Enfermedades Musculares/tratamiento farmacológico , Mioblastos/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Receptores de Esfingosina-1-Fosfato/antagonistas & inhibidores , Animales , Fibrosis/metabolismo , Fibrosis/patología , Masculino , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Mioblastos/metabolismo , Mioblastos/patología , Receptores de Lisoesfingolípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...