Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Host Microbe ; 32(1): 35-47.e6, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38096814

RESUMEN

Bacteriophages are key components of gut microbiomes, yet the phage colonization process in the infant gut remains uncertain. Here, we establish a large phage sequence database and use strain-resolved analyses to investigate DNA phage succession in infants throughout the first 3 years of life. Analysis of 819 fecal metagenomes collected from 28 full-term and 24 preterm infants and their mothers revealed that early-life phageome richness increases over time and reaches adult-like complexity by age 3. Approximately 9% of early phage colonizers, which are mostly maternally transmitted and infect Bacteroides, persist for 3 years and are more prevalent in full-term than in preterm infants. Although rare, phages with stop codon reassignment are more likely to persist than non-recoded phages and generally display an increase in in-frame reassigned stop codons over 3 years. Overall, maternal seeding, stop codon reassignment, host CRISPR-Cas locus prevalence, and diverse phage populations contribute to stable viral colonization.


Asunto(s)
Bacteriófagos , Microbioma Gastrointestinal , Lactante , Femenino , Adulto , Humanos , Recién Nacido , Preescolar , Bacteriófagos/genética , Codón de Terminación , Recien Nacido Prematuro , Microbioma Gastrointestinal/genética , ADN
2.
Microbiome ; 11(1): 36, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864482

RESUMEN

BACKGROUND: Metagenomics analyses can be negatively impacted by DNA contamination. While external sources of contamination such as DNA extraction kits have been widely reported and investigated, contamination originating within the study itself remains underreported. RESULTS: Here, we applied high-resolution strain-resolved analyses to identify contamination in two large-scale clinical metagenomics datasets. By mapping strain sharing to DNA extraction plates, we identified well-to-well contamination in both negative controls and biological samples in one dataset. Such contamination is more likely to occur among samples that are on the same or adjacent columns or rows of the extraction plate than samples that are far apart. Our strain-resolved workflow also reveals the presence of externally derived contamination, primarily in the other dataset. Overall, in both datasets, contamination is more significant in samples with lower biomass. CONCLUSION: Our work demonstrates that genome-resolved strain tracking, with its essentially genome-wide nucleotide-level resolution, can be used to detect contamination in sequencing-based microbiome studies. Our results underscore the value of strain-specific methods to detect contamination and the critical importance of looking for contamination beyond negative and positive controls. Video Abstract.


Asunto(s)
Metagenómica , Microbiota , Biomasa , Contaminación de ADN , Microbiota/genética , ADN
3.
Nat Biotechnol ; 41(12): 1820-1828, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36928429

RESUMEN

Sequencing-based approaches for the analysis of microbial communities are susceptible to contamination, which could mask biological signals or generate artifactual ones. Methods for in silico decontamination using controls are routinely used, but do not make optimal use of information shared across samples and cannot handle taxa that only partially originate in contamination or leakage of biological material into controls. Here we present Source tracking for Contamination Removal in microBiomes (SCRuB), a probabilistic in silico decontamination method that incorporates shared information across multiple samples and controls to precisely identify and remove contamination. We validate the accuracy of SCRuB in multiple data-driven simulations and experiments, including induced contamination, and demonstrate that it outperforms state-of-the-art methods by an average of 15-20 times. We showcase the robustness of SCRuB across multiple ecosystems, data types and sequencing depths. Demonstrating its applicability to microbiome research, SCRuB facilitates improved predictions of host phenotypes, most notably the prediction of treatment response in melanoma patients using decontaminated tumor microbiome data.


Asunto(s)
Microbiota , Neoplasias , Humanos , Microbiota/genética , Fenotipo
4.
Cell Rep Med ; 2(9): 100393, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34622230

RESUMEN

Gut microbiome succession affects infant development. However, it remains unclear what factors promote persistence of initial bacterial colonizers in the developing gut. Here, we perform strain-resolved analyses to compare gut colonization of preterm and full-term infants throughout the first year of life and evaluate associations between strain persistence and strain origin as well as genetic potential. Analysis of fecal metagenomes collected from 13 full-term and 9 preterm infants reveals that infants' initially distinct microbiomes converge by age 1 year. Approximately 11% of early colonizers, primarily Bacteroides and Bifidobacterium, persist during the first year of life, and those are more prevalent in full-term, compared with preterm infants. Examination of 17 mother-infant pairs reveals maternal gut strains are significantly more likely to persist in the infant gut than other strains. Enrichment in genes for surface adhesion, iron acquisition, and carbohydrate degradation may explain persistence of some strains through the first year of life.


Asunto(s)
Adhesión Bacteriana , Microbioma Gastrointestinal , Hierro/metabolismo , Filogenia , Bacterias/genética , Metabolismo de los Hidratos de Carbono , Heces/microbiología , Genoma Humano , Humanos , Lactante , Recién Nacido , Recien Nacido Prematuro/fisiología , Metagenómica , Hermanos
5.
Microbiome ; 9(1): 142, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34154658

RESUMEN

BACKGROUND: Candida parapsilosis is a common cause of invasive candidiasis, especially in newborn infants, and infections have been increasing over the past two decades. C. parapsilosis has been primarily studied in pure culture, leaving gaps in understanding of its function in a microbiome context. RESULTS: Here, we compare five unique C. parapsilosis genomes assembled from premature infant fecal samples, three of which are newly reconstructed, and analyze their genome structure, population diversity, and in situ activity relative to reference strains in pure culture. All five genomes contain hotspots of single nucleotide variants, some of which are shared by strains from multiple hospitals. A subset of environmental and hospital-derived genomes share variants within these hotspots suggesting derivation of that region from a common ancestor. Four of the newly reconstructed C. parapsilosis genomes have 4 to 16 copies of the gene RTA3, which encodes a lipid translocase and is implicated in antifungal resistance, potentially indicating adaptation to hospital antifungal use. Time course metatranscriptomics and metaproteomics on fecal samples from a premature infant with a C. parapsilosis blood infection revealed highly variable in situ expression patterns that are distinct from those of similar strains in pure cultures. For example, biofilm formation genes were relatively less expressed in situ, whereas genes linked to oxygen utilization were more highly expressed, indicative of growth in a relatively aerobic environment. In gut microbiome samples, C. parapsilosis co-existed with Enterococcus faecalis that shifted in relative abundance over time, accompanied by changes in bacterial and fungal gene expression and proteome composition. CONCLUSIONS: The results reveal potentially medically relevant differences in Candida function in gut vs. laboratory environments, and constrain evolutionary processes that could contribute to hospital strain persistence and transfer into premature infant microbiomes. Video abstract.


Asunto(s)
Candidiasis , Microbiota , Candida parapsilosis/genética , Humanos , Lactante , Recién Nacido , Pruebas de Sensibilidad Microbiana , Proteómica , Transcriptoma
6.
J Neurotrauma ; 38(18): 2610-2621, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-33957773

RESUMEN

Traumatic brain injury (TBI) alters microbial populations present in the gut, which may impact healing and tissue recovery. However, the duration and impact of these changes on outcome from TBI are unknown. Short-chain fatty acids (SCFAs), produced by bacterial fermentation of dietary fiber, are important signaling molecules in the microbiota gut-brain axis. We hypothesized that TBI would lead to a sustained reduction in SCFA producing bacteria, fecal SCFAs concentration, and administration of soluble SCFAs would improve functional outcome after TBI. Adult mice (n = 10) had the controlled cortical impact (CCI) model of TBI performed (6 m/sec, 2-mm depth, 50-msec dwell). Stool samples were collected serially until 28 days after CCI and analyzed for SCFA concentration by high-performance liquid chromatography-mass spectrometry/mass spectrometry and microbiome analyzed by 16S gene sequencing. In a separate experiment, mice (n = 10/group) were randomized 2 weeks before CCI to standard drinking water or water supplemented with the SCFAs acetate (67.5 mM), propionate (25.9 mM), and butyrate (40 mM). Morris water maze performance was assessed on post-injury Days 14-19. Alpha diversity remained stable until 72 h, at which point a decline in diversity was observed without recovery out to 28 days. The taxonomic composition of post-TBI fecal samples demonstrated depletion of bacteria from Lachnospiraceae, Ruminococcaceae, and Bacteroidaceae families, and enrichment of bacteria from the Verrucomicrobiaceae family. Analysis from paired fecal samples revealed a reduction in total SCFAs at 24 h and 28 days after TBI. Acetate, the most abundant SCFA detected in the fecal samples, was reduced at 7 days and 28 days after TBI. SCFA administration improved spatial learning after TBI versus standard drinking water. In conclusion, TBI is associated with reduced richness and diversity of commensal microbiota in the gut and a reduction in SCFAs detected in stool. Supplementation of soluble SCFAs improves spatial learning after TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/psicología , Disbiosis/etiología , Ácidos Grasos Volátiles/metabolismo , Heces/química , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/psicología , Animales , Lesiones Traumáticas del Encéfalo/metabolismo , Eje Cerebro-Intestino , Suplementos Dietéticos , Ácidos Grasos Volátiles/química , Ácidos Grasos Volátiles/farmacología , Heces/microbiología , Microbioma Gastrointestinal , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Enfermedades del Sistema Nervioso/metabolismo , Desempeño Psicomotor/efectos de los fármacos , ARN Ribosómico 16S/genética , Resultado del Tratamiento
7.
Nat Biotechnol ; 39(6): 727-736, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33462508

RESUMEN

Coexisting microbial cells of the same species often exhibit genetic variation that can affect phenotypes ranging from nutrient preference to pathogenicity. Here we present inStrain, a program that uses metagenomic paired reads to profile intra-population genetic diversity (microdiversity) across whole genomes and compares microbial populations in a microdiversity-aware manner, greatly increasing the accuracy of genomic comparisons when benchmarked against existing methods. We use inStrain to profile >1,000 fecal metagenomes from newborn premature infants and find that siblings share significantly more strains than unrelated infants, although identical twins share no more strains than fraternal siblings. Infants born by cesarean section harbor Klebsiella with significantly higher nucleotide diversity than infants delivered vaginally, potentially reflecting acquisition from hospital rather than maternal microbiomes. Genomic loci that show diversity in individual infants include variants found between other infants, possibly reflecting inoculation from diverse hospital-associated sources. inStrain can be applied to any metagenomic dataset for microdiversity analysis and rigorous strain comparison.


Asunto(s)
Biodiversidad , Metagenómica , Microbiota , Humanos , Recién Nacido , Polimorfismo de Nucleótido Simple
8.
Brain Res ; 1747: 147056, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32798452

RESUMEN

Signaling between intestinal microbiota and the brain influences neurologic outcome in multiple forms of brain injury. The impact of gut microbiota following traumatic brain injury (TBI) has not been well established. Our objective was to compare TBI outcomes in specific pathogen-free mice with or without depletion of intestinal bacteria. Adult male C57BL6/J SPF mice (n = 6/group) were randomized to standard drinking water or ampicillin (1 g/L), metronidazole (1 g/L), neomycin (1 g/L), and vancomycin (0.5 g/L) (AMNV) containing drinking water 14 days prior to controlled cortical impact (CCI) model of TBI. 16S rRNA gene sequencing of fecal pellets was performed and alpha and beta diversity determined. Hippocampal neuronal density and microglial activation was assessed 72 h post-injury by immunohistochemistry. In addition, mice (n = 8-12/group) were randomized to AMNV or no treatment initiated immediately after CCI and memory acquisition (fear conditioning) and lesion volume assessed. Mice receiving AMNV had significantly reduced alpha diversity (p < 0.05) and altered microbiota community composition compared to untreated mice (PERMANOVA: p < 0.01). Mice receiving AMNV prior to TBI had increased CA1 hippocampal neuronal density (15.2 ± 1.4 vs. 8.8 ± 2.1 cells/0.1 mm; p < 0.05) and a 26.6 ± 6.6% reduction in Iba-1 positive cells (p < 0.05) at 72 h. Mice randomized to AMNV immediately after CCI had attenuated associative learning deficit on fear conditioning test (%freeze Cue: 63.7 ± 2.7% vs. 41.0 ± 5.1%, p < 0.05) and decreased lesion volume (27.2 ± 0.8 vs. 24.6 ± 0.7 mm3, p < 0.05). In conclusion, depletion of intestinal microbiota was consistent with a neuroprotective effect whether initiated before or after injury in a murine model of TBI. Further investigations of the role of gut microbiota in TBI are warranted.


Asunto(s)
Lesiones Traumáticas del Encéfalo/fisiopatología , Microbioma Gastrointestinal/fisiología , Hipocampo/fisiopatología , Neuronas/fisiología , Recuperación de la Función/fisiología , Animales , Lesiones Traumáticas del Encéfalo/microbiología , Lesiones Traumáticas del Encéfalo/patología , Modelos Animales de Enfermedad , Hipocampo/microbiología , Hipocampo/patología , Inflamación/microbiología , Inflamación/patología , Inflamación/fisiopatología , Ratones , Neuronas/microbiología , Neuronas/patología
9.
Sci Adv ; 5(12): eaax5727, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31844663

RESUMEN

Necrotizing enterocolitis (NEC) is a devastating intestinal disease that occurs primarily in premature infants. We performed genome-resolved metagenomic analysis of 1163 fecal samples from premature infants to identify microbial features predictive of NEC. Features considered include genes, bacterial strain types, eukaryotes, bacteriophages, plasmids, and growth rates. A machine learning classifier found that samples collected before NEC diagnosis harbored significantly more Klebsiella, bacteria encoding fimbriae, and bacteria encoding secondary metabolite gene clusters related to quorum sensing and bacteriocin production. Notably, replication rates of all bacteria, especially Enterobacteriaceae, were significantly higher 2 days before NEC diagnosis. The findings uncover biomarkers that could lead to early detection of NEC and targets for microbiome-based therapeutics.


Asunto(s)
Enterocolitis Necrotizante/genética , Fimbrias Bacterianas/genética , Microbioma Gastrointestinal/genética , Metagenómica , Enterobacteriaceae/genética , Enterocolitis Necrotizante/microbiología , Heces/microbiología , Fimbrias Bacterianas/microbiología , Humanos , Recién Nacido , Recien Nacido Prematuro , Enfermedades del Prematuro/genética , Enfermedades del Prematuro/microbiología , Klebsiella/genética , Familia de Multigenes/genética
10.
Nat Med ; 25(7): 1110-1115, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31209335

RESUMEN

Neonates are protected from colonizing bacteria by antibodies secreted into maternal milk. Necrotizing enterocolitis (NEC) is a disease of neonatal preterm infants with high morbidity and mortality that is associated with intestinal inflammation driven by the microbiota1-3. The incidence of NEC is substantially lower in infants fed with maternal milk, although the mechanisms that underlie this benefit are not clear4-6. Here we show that maternal immunoglobulin A (IgA) is an important factor for protection against NEC. Analysis of IgA binding to fecal bacteria from preterm infants indicated that maternal milk was the predominant source of IgA in the first month of life and that a relative decrease in IgA-bound bacteria is associated with the development of NEC. Sequencing of IgA-bound and unbound bacteria revealed that before the onset of disease, NEC was associated with increasing domination by Enterobacteriaceae in the IgA-unbound fraction of the microbiota. Furthermore, we confirmed that IgA is critical for preventing NEC in a mouse model, in which pups that are reared by IgA-deficient mothers are susceptible to disease despite exposure to maternal milk. Our findings show that maternal IgA shapes the host-microbiota relationship of preterm neonates and that IgA in maternal milk is a critical and necessary factor for the prevention of NEC.


Asunto(s)
Enterocolitis Necrotizante/prevención & control , Inmunoglobulina A/fisiología , Adulto , Animales , Enterobacteriaceae/fisiología , Enterocolitis Necrotizante/epidemiología , Femenino , Interacciones Microbiota-Huesped , Humanos , Recién Nacido , Recien Nacido Prematuro , Masculino , Ratones , Ratones Endogámicos C57BL , Embarazo
11.
Microbiome ; 7(1): 26, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30770768

RESUMEN

BACKGROUND: Fungal infections are a significant cause of mortality and morbidity in hospitalized preterm infants, yet little is known about eukaryotic colonization of infants and of the neonatal intensive care unit as a possible source of colonizing strains. This is partly because microbiome studies often utilize bacterial 16S rRNA marker gene sequencing, a technique that is blind to eukaryotic organisms. Knowledge gaps exist regarding the phylogeny and microdiversity of eukaryotes that colonize hospitalized infants, as well as potential reservoirs of eukaryotes in the hospital room built environment. RESULTS: Genome-resolved analysis of 1174 time-series fecal metagenomes from 161 premature infants revealed fungal colonization of 10 infants. Relative abundance levels reached as high as 97% and were significantly higher in the first weeks of life (p = 0.004). When fungal colonization occurred, multiple species were present more often than expected by random chance (p = 0.008). Twenty-four metagenomic samples were analyzed from hospital rooms of six different infants. Compared to floor and surface samples, hospital sinks hosted diverse and highly variable communities containing genomically novel species, including from Diptera (fly) and Rhabditida (worm) for which genomes were assembled. With the exception of Diptera and two other organisms, zygosity of the newly assembled diploid eukaryote genomes was low. Interestingly, Malassezia and Candida species were present in both room and infant gut samples. CONCLUSIONS: Increased levels of fungal co-colonization may reflect synergistic interactions or differences in infant susceptibility to fungal colonization. Discovery of eukaryotic organisms that have not been sequenced previously highlights the benefit of genome-resolved analyses, and low zygosity of assembled genomes could reflect inbreeding or strong selection imposed by room conditions.


Asunto(s)
Heces/microbiología , Hongos/clasificación , Metagenómica/métodos , Microbiología Ambiental , Hongos/genética , Hongos/aislamiento & purificación , Hospitalización , Humanos , Recién Nacido , Recien Nacido Prematuro , Unidades de Cuidado Intensivo Neonatal , Filogenia
12.
Microbiome ; 6(1): 112, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29925423

RESUMEN

BACKGROUND: The neonatal intensive care unit (NICU) contains a unique cohort of patients with underdeveloped immune systems and nascent microbiome communities. Patients often spend several months in the same room, and it has been previously shown that the gut microbiomes of these infants often resemble the microbes found in the NICU. Little is known, however, about the identity, persistence, and absolute abundance of NICU room-associated bacteria over long stretches of time. Here, we couple droplet digital PCR (ddPCR), 16S rRNA gene surveys, and recently published metagenomics data from infant gut samples to infer the extent to which the NICU microbiome is shaped by its room occupants. RESULTS: Over 2832 swabs, wipes, and air samples were collected from 16 private-style NICU rooms housing very low birth weight (< 1500 g), premature (< 31 weeks' gestation) infants. For each infant, room samples were collected daily, Monday through Friday, for 1 month. The first samples from the first infant and the last samples from the last infant were collected 383 days apart. Twenty-two NICU locations spanning room surfaces, hands, electronics, sink basins, and air were collected. Results point to an incredibly simple room community where 5-10 taxa, mostly skin-associated, account for over 50% of the amplicon reads. Biomass estimates reveal four to five orders of magnitude difference between the least to the most dense microbial communities, air, and sink basins, respectively. Biomass trends from bioaerosol samples and petri dish dust collectors suggest occupancy to be a main driver of suspended biological particles within the NICU. Using a machine learning algorithm to classify the origin of room samples, we show that each room has a unique microbial fingerprint. Several important taxa driving this model were dominant gut colonizers of infants housed within each room. CONCLUSIONS: Despite regular cleaning of hospital surfaces, bacterial biomass was detectable at varying densities. A room-specific microbiome signature was detected, suggesting microbes seeding NICU surfaces are sourced from reservoirs within the room and that these reservoirs contain actively dividing cells. Collectively, the data suggests that hospitalized infants, in combination with their caregivers, shape the microbiome of NICU rooms.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Microbioma Gastrointestinal/genética , Tracto Gastrointestinal/microbiología , Unidades de Cuidado Intensivo Neonatal , Piel/microbiología , Aerosoles , Bacterias/genética , Secuencia de Bases , Polvo , Heces/microbiología , Humanos , Recién Nacido , Recien Nacido Prematuro , Recién Nacido de muy Bajo Peso , Nacimiento Prematuro , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
13.
Inflamm Bowel Dis ; 24(2): 410-421, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29361092

RESUMEN

Background: The role of fecal microbiota transplant (FMT) in the treatment of pediatric inflammatory bowel disease (IBD) is unknown. The aims of this study were to assess safety, clinical response, and gut microbiome alterations in children with Crohn's disease (CD), ulcerative colitis (UC), or indeterminate colitis (IC). Methods: In this open-label, single-center prospective trial, patients with IBD refractory to medical therapy underwent a single FMT by upper and lower endoscopy. Adverse events, clinical response, gut microbiome, and biomarkers were assessed at baseline, 1 week, 1 month, and 6 months following FMT. Results: Twenty-one subjects were analyzed, with a median age of 12 years, of whom 57% and 28% demonstrated clinical response at 1 and 6 months post-FMT, respectively. Two CD patients were in remission at 6 months. Adverse events attributable to FMT were mild to moderate and self-limited. Patients prior to FMT showed decreased species diversity and significant microbiome compositional differences characterized by increased Enterobacteriaceae, Enterococcus, Haemophilus, and Fusobacterium compared with donors and demonstrated increased species diversity at 30 days post-FMT. At 6 months, these changes shifted toward baseline. Clinical responders had a higher relative abundance of Fusobacterium and a lower diversity at baseline, as well as a greater shift toward donor-like microbiome after FMT compared with nonresponders. Conclusions: A single FMT is relatively safe and can result in a short-term response in young patients with active IBD. Responders possessed increased Fusobacterium prior to FMT and demonstrated more significant microbiome changes compared with nonresponders after FMT. Microbiome characteristics may help in predicting response.


Asunto(s)
Biomarcadores/análisis , Trasplante de Microbiota Fecal , Heces/microbiología , Enfermedades Inflamatorias del Intestino/terapia , Adolescente , Bacterias/clasificación , Niño , Femenino , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Humanos , Masculino , Estudios Prospectivos , Inducción de Remisión , Índice de Severidad de la Enfermedad
14.
Nat Commun ; 8(1): 1814, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-29180750

RESUMEN

Preterm infants exhibit different microbiome colonization patterns relative to full-term infants, and it is speculated that the hospital room environment may contribute to infant microbiome development. Here, we present a genome-resolved metagenomic study of microbial genotypes from the gastrointestinal tracts of infants and from the neonatal intensive care unit (NICU) room environment. Some strains detected in hospitalized infants also occur in sinks and on surfaces, and belong to species such as Staphylococcus epidermidis, Enterococcus faecalis, Pseudomonas aeruginosa, and Klebsiella pneumoniae, which are frequently implicated in nosocomial infection and preterm infant gut colonization. Of the 15 K. pneumoniae strains detected in the study, four were detected in both infant gut and room samples. Time series experiments showed that nearly all strains associated with infant gut colonization can be detected in the room after, and often before, detection in the gut. Thus, we conclude that a component of premature infant gut colonization is the cycle of microbial exchange between the room and the occupant.


Asunto(s)
Infección Hospitalaria/microbiología , Microbioma Gastrointestinal/genética , Tracto Gastrointestinal/fisiología , Recien Nacido Prematuro/fisiología , Unidades de Cuidado Intensivo Neonatal , Exposición a Riesgos Ambientales , Heces/microbiología , Femenino , Tracto Gastrointestinal/microbiología , Humanos , Lactante , Recién Nacido , Metagenómica/métodos
15.
Microbiome ; 2(1): 1, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24468033

RESUMEN

BACKGROUND: The source inoculum of gastrointestinal tract (GIT) microbes is largely influenced by delivery mode in full-term infants, but these influences may be decoupled in very low birth weight (VLBW, <1,500 g) neonates via conventional broad-spectrum antibiotic treatment. We hypothesize the built environment (BE), specifically room surfaces frequently touched by humans, is a predominant source of colonizing microbes in the gut of premature VLBW infants. Here, we present the first matched fecal-BE time series analysis of two preterm VLBW neonates housed in a neonatal intensive care unit (NICU) over the first month of life. RESULTS: Fresh fecal samples were collected every 3 days and metagenomes sequenced on an Illumina HiSeq2000 device. For each fecal sample, approximately 33 swabs were collected from each NICU room from 6 specified areas: sink, feeding and intubation tubing, hands of healthcare providers and parents, general surfaces, and nurse station electronics (keyboard, mouse, and cell phone). Swabs were processed using a recently developed 'expectation maximization iterative reconstruction of genes from the environment' (EMIRGE) amplicon pipeline in which full-length 16S rRNA amplicons were sheared and sequenced using an Illumina platform, and short reads reassembled into full-length genes. Over 24,000 full-length 16S rRNA sequences were produced, generating an average of approximately 12,000 operational taxonomic units (OTUs) (clustered at 97% nucleotide identity) per room-infant pair. Dominant gut taxa, including Staphylococcus epidermidis, Klebsiella pneumoniae, Bacteroides fragilis, and Escherichia coli, were widely distributed throughout the room environment with many gut colonizers detected in more than half of samples. Reconstructed genomes from infant gut colonizers revealed a suite of genes that confer resistance to antibiotics (for example, tetracycline, fluoroquinolone, and aminoglycoside) and sterilizing agents, which likely offer a competitive advantage in the NICU environment. CONCLUSIONS: We have developed a high-throughput culture-independent approach that integrates room surveys based on full-length 16S rRNA gene sequences with metagenomic analysis of fecal samples collected from infants in the room. The approach enabled identification of discrete ICU reservoirs of microbes that also colonized the infant gut and provided evidence for the presence of certain organisms in the room prior to their detection in the gut.

16.
J Mol Biol ; 391(2): 471-83, 2009 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-19540242

RESUMEN

Encapsidation of duplex DNA by bacteriophages represents an extreme case of genome condensation, reaching near-crystalline concentrations of DNA. The HK97 system is well suited to study this phenomenon in view of the detailed knowledge of its capsid structure. To characterize the interactions involved, we combined calorimetry with cryo-electron microscopy and native gel electrophoresis. We found that, as in other phages, HK97 DNA is organized in coaxially wound nested shells. When DNA-filled capsids (heads) are scanned in buffer containing 1 mM Mg(2+), DNA melting and capsid denaturation both contribute to the complex thermal profile between 82 degrees C and 96 degrees C. In other conditions (absence of Mg(2+) and lower ionic strength), DNA melting shifts to lower temperatures and the two events are resolved. Heads release their DNA at temperatures well below the onset of DNA melting or capsid denaturation. We suggest that, on heating, the internal pressure increases, causing the DNA to exit-probably via the portal vertex-while the capsid, although largely intact, sustains local damage that leads to an earlier onset of thermal denaturation. Heads differ structurally from empty capsids in the curvature of their protein shell, a change attributable to outwards pressure exerted by the DNA. We propose that this transition is sensed by the portal that is embedded in the capsid wall, whereupon the structure of the portal and its interactions with terminase, the packaging enzyme, are altered, thus signaling that packaging is at or approaching completion.


Asunto(s)
Bacteriófagos/química , Proteínas de la Cápside/química , Cápside/química , ADN Viral/química , Bacteriófagos/ultraestructura , Rastreo Diferencial de Calorimetría , Cápside/ultraestructura , Proteínas de la Cápside/ultraestructura , Microscopía por Crioelectrón , ADN Viral/ultraestructura , Conformación de Ácido Nucleico , Conformación Proteica , Termodinámica
17.
J Virol ; 83(5): 2088-98, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19091865

RESUMEN

The capsid of bacteriophage HK97 is stabilized by approximately 400 covalent cross-links between subunits which form without any action by external enzymes or cofactors. Cross-linking only occurs in fully assembled particles after large-scale structural changes bring together side chains from three subunits at each cross-linking site. Isopeptide cross-links form between asparagine and lysine side chains on two subunits. The carboxylate of glutamic acid 363 (E363) from a third subunit is found approximately 2.4 A from the isopeptide bond in the partly hydrophobic pocket that contains the cross-link. It was previously reported without supporting data that changing E363 to alanine abolishes cross-linking, suggesting that E363 plays a role in cross-linking. This alanine mutant and six additional substitutions for E363 were fully characterized and the proheads produced by the mutants were tested for their ability to cross-link under a variety of conditions. Aspartic acid and histidine substitutions supported cross-linking to a significant extent, while alanine, asparagine, glutamine, and tyrosine did not, suggesting that residue 363 acts as a proton acceptor during cross-linking. These results support a chemical mechanism, not yet fully tested, that incorporates this suggestion, as well as features of the structure at the cross-link site. The chemically identical isopeptide bonds recently documented in bacterial pili have a strikingly similar chemical geometry at their cross-linking sites, suggesting a common chemical mechanism with the phage protein, but the completely different structures and folds of the two proteins argues that the phage capsid and bacterial pilus proteins have achieved shared cross-linking chemistry by convergent evolution.


Asunto(s)
Proteínas de la Cápside/metabolismo , Cápside/metabolismo , Colifagos/genética , Ácido Glutámico/metabolismo , Sustitución de Aminoácidos , Proteínas de la Cápside/genética , Colifagos/metabolismo , Colifagos/fisiología , Colifagos/ultraestructura , Reactivos de Enlaces Cruzados , Prueba de Complementación Genética , Concentración de Iones de Hidrógeno , Mutagénesis , Dodecil Sulfato de Sodio , Ensamble de Virus
18.
Structure ; 14(11): 1655-65, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17098191

RESUMEN

Maturation of the bacteriophage HK97 capsid from a precursor (Prohead II) to the mature state (Head II) involves a 60 A radial expansion. The mature particle is formed by 420 copies of the major capsid protein organized on a T = 7 laevo lattice with each subunit covalently crosslinked to two neighbors. Well-characterized pH 4 expansion intermediates make HK97 valuable for investigating quaternary structural dynamics. Here, we use X-ray crystallography and cryo-EM to demonstrate that in the final transition in maturation (requiring neutral pH), pentons in Expansion Intermediate IV (EI-IV) reversibly sample 14 A translations and 6 degrees rotations relative to a fixed hexon lattice. The limit of this trajectory corresponds to the Head II conformation that is secured at this extent only by the formation of the final class of covalent crosslinks. Mutants that cannot crosslink or EI-IV particles that have been rendered incapable of forming the final crosslink remain in the EI-IV state.


Asunto(s)
Cápside/química , Microscopía por Crioelectrón/métodos , Cristalografía por Rayos X/métodos , Bacteriófago lambda/química , Reactivos de Enlaces Cruzados/farmacología , Cristalización , Electrones , Concentración de Iones de Hidrógeno , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Conformación Proteica , Pliegue de Proteína , Ensamble de Virus
19.
J Mol Biol ; 364(3): 512-25, 2006 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17007875

RESUMEN

We investigated the thermodynamic basis of HK97 assembly by scanning calorimetry and cryo-electron microscopy. This pathway involves self-assembly of hexamers and pentamers of the precursor capsid protein gp5 into procapsids; proteolysis of their N-terminal Delta-domains; expansion, a major conformational change; and covalent crosslinking. The thermal denaturation parameters convey the changes in stability at successive steps in assembly, and afford estimates of the corresponding changes in free energy. The procapsid represents a kinetically accessible local minimum of free energy. In maturation, it progresses to lower minima in a cascade punctuated by irreversible processes ("locks"), i.e. proteolysis and crosslinking, that lower kinetic barriers and prevent regression. We infer that Delta-domains not only guide assembly but also restrain the procapsid from premature expansion; their removal by proteolysis is conducive to initiating expansion and to its proceeding to completion. We also analyzed the mutant E219K, whose capsomers reassemble in vitro into procapsids with vacant vertices called "whiffleballs". E219K assemblies all have markedly reduced stability compared to wild-type gp5 (DeltaT(p) approximately -7 degrees C to -10 degrees C; where T(p) is the denaturation temperature). As the mutated residue is buried in the core of gp5, we attribute the observed reduction in stability to steric and electrostatic perturbations of the packing of side-chains in the subunit interior. To explain the whiffleball phenotype, we suggest that these effects propagate to the capsomer periphery in such a way as to differentially affect the stability or solubility of dissociated pentamers, leaving only hexamers to reassemble.


Asunto(s)
Bacteriófagos/fisiología , Proteínas de la Cápside/metabolismo , Cápside/fisiología , Modelos Moleculares , Bacteriófagos/metabolismo , Bacteriófagos/ultraestructura , Rastreo Diferencial de Calorimetría , Cápside/metabolismo , Cápside/ultraestructura , Proteínas de la Cápside/ultraestructura , Microscopía por Crioelectrón , Mutación , Estructura Terciaria de Proteína , Termodinámica
20.
EMBO J ; 24(7): 1352-63, 2005 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-15775971

RESUMEN

In HK97 capsid maturation, structural change ('expansion') is accompanied by formation of covalent crosslinks, connecting residue K169 in the 'E-loop' of each subunit with N356 on another subunit. We show by complementation experiments with the K169Y mutant, which cannot crosslink, that crosslinking is an essential function. The precursor Prohead-II passes through three expansion intermediate (EI) states en route to the end state, Head-II. We investigated the effects of expansion and crosslinking on stability by differential scanning calorimetry of wild-type and K169Y capsids. After expansion, the denaturation temperature (Tp) of K169Y capsids is slightly reduced, indicating that their thermal stability is not enhanced, but crosslinking effects a major stabilization (deltaTp, +11 degrees C). EI-II is the earliest capsid to form crosslinks. Cryo-electron microscopy shows that for both wild-type and K169Y EI-II, most E-loops are in the 'up' position, 30 A from the nearest N356: thus, crosslinking in EI-II represents capture of mobile E-loops in 'down' positions. At pH 4, most K169Y capsids remain as EI-II, whereas wild-type capsids proceed to EI-III, suggesting that crosslink formation drives maturation by a Brownian ratchet mechanism.


Asunto(s)
Bacteriófagos/fisiología , Proteínas de la Cápside/biosíntesis , Proteínas de la Cápside/ultraestructura , Modelos Moleculares , Subunidades de Proteína/metabolismo , Ensamble de Virus/fisiología , Rastreo Diferencial de Calorimetría , Proteínas de la Cápside/genética , Microscopía por Crioelectrón , Prueba de Complementación Genética , Mutación/genética , Conformación Proteica , Proteínas del Núcleo Viral/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA