Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Cell Int ; 24(1): 46, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287318

RESUMEN

Recently, the presence of different nanoparticles (NPs) has developed targeting drug delivery in treatment of cancer cell. Targeted drug delivery systems using NPs have shown great promise in improving the efficacy of intracellular uptake as well as local concentration of therapeutics with minimizing side effects. The current study planned to synthesized resveratrol-loaded magnetic niosomes nanoparticles (RSV-MNIONPs) and evaluate their cytotoxicity activity in pancreatic cancer cells. For this aim, magnetic nanoparticles (MNPs) were synthesized and loaded into niosomes (NIOs) by the thin film hydration technique and then characterized via DLS, FT-IR, TEM, SEM and VSM techniques. Moreover, the cytotoxic activity of the RSV-MNIONPs on the Capan-1 cells line was assessed by the MTT test. The distribution number of RSV-MNIONPs was gained about 80 nm and 95 nm with surface charge of - 14.0 mV by SEM and TEM analysis, respectively. RSV loading efficacy in NIOs was about 85%, and the drug releases pattern displayed a sustained discharge with a maximum amount about 35% and 40%, within 4 h in pH = 7.4 and pH = 5.8, respectively. The cytotoxicity of the RSV-MNIONPs in the presence of an external magnetic field is higher than that of the RSV, indicating enhanced cellular uptake in their encapsulated states. Furthermore, RSV loaded MNNPs were found to induce more cell cycle arrest at the G0/G1 checkpoint than free RSV. Compared with RSV-treated cells, the mRNA expression levels of BAX, Bcl2, FAS, P 53, Cyclin D and hTERT, were significantly changed in cells treated with RSV loaded MNNPs. The niosomes NPs approaches have been widely used to attain higher solubility, improved bioavailability, enhanced stability, and control delivery of RSV. Our formulation displayed antitumor activity and can be considered an appropriate carrier with a great potential for future usage in cancer therapy.

2.
Exp Cell Res ; 435(1): 113926, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38228225

RESUMEN

The present research aims to evaluate the efficacy of Silibinin-loaded mesoporous silica nanoparticles (Sil@MSNs) immobilized into polylactic-co-glycolic acid/Collagen (PLGA/Col) nanofibers on the in vitro proliferation of adipose-derived stem cells (ASCs) and cellular senescence. Here, the fabricated electrospun PLGA/Col composite scaffolds were coated with Sil@MSNs and their physicochemical properties were examined by FTIR, FE-SEM, and TGA. The growth, viability and proliferation of ASCs were investigated using various biological assays including PicoGreen, MTT, and RT-PCR after 21 days. The proliferation and adhesion of ASCs were supported by the biological and mechanical characteristics of the Sil@MSNs PLGA/Col composite scaffolds, according to FE- SEM. PicoGreen and cytotoxicity analysis showed an increase in the rate of proliferation and metabolic activity of hADSCs after 14 and 21 days, confirming the initial and controlled release of Sil from nanofibers. Gene expression analysis further confirmed the increased expression of stemness markers as well as hTERT and telomerase in ASCs seeded on Sil@MSNs PLGA/Col nanofibers compared to the control group. Ultimately, the findings of the present study introduced Sil@MSNs PLGA/Col composite scaffolds as an efficient platform for long-term proliferation of ASCs in tissue engineering.


Asunto(s)
Nanofibras , Andamios del Tejido , Adhesión Celular , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Silibina/farmacología , Andamios del Tejido/química , Nanofibras/química , Colágeno/farmacología , Colágeno/química , Ingeniería de Tejidos , Células Madre , Proliferación Celular , Células Cultivadas , Compuestos Orgánicos
3.
Immunol Invest ; 53(2): 160-184, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38031988

RESUMEN

Systemic lupus erythematosus (SLE) is an autoimmune disease with an unknown etiology that has widespread clinical and immunological manifestations. Despite the increase in knowledge about the pathogenesis process and the increase in treatment options, however, the treatments fail in half of the cases. Therefore, there is still a need for research on new therapies. Mesenchymal stem cells (MSCs) are powerful regulators of the immune system and can reduce the symptoms of systemic lupus erythematosus. This study aimed to review the mechanisms of immune system modulation by MSCs and the role of these cells in the treatment of SLE. MSCs suppress T lymphocytes through various mechanisms, including the production of transforming growth factor-beta (TGF-B), prostaglandin E2 (PGE2), nitric oxide (NO), and indolamine 2 and 3-oxygenase (IDO). In addition, MSCs inhibit the production of their autoantibodies by inhibiting the differentiation of lymphocytes. The production of autoantibodies against nuclear antigens is an important feature of SLE. On the other hand, MSCs inhibit antigen delivery by antigen-presenting cells (APCs) to T lymphocytes. Studies in animal models have shown the effectiveness of these cells in treating SLE. However, few studies have been performed on the effectiveness of this treatment in humans. It can be expected that new treatment strategies for SLE will be introduced in the future, given the promising results of MSCs application.


Asunto(s)
Lupus Eritematoso Sistémico , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Humanos , Células Cultivadas , Autoanticuerpos
4.
BMC Biotechnol ; 23(1): 55, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38115008

RESUMEN

In tissue engineering (TE) and regenerative medicine, the accessibility of engineered scaffolds that modulate inflammatory states is extremely necessary. The aim of the current work was to assess the efficacy of metformin (MET) incorporated in PLGA/Collagen nanofibers (Met-PLGA/Col NFs) to modulate RAW264.7 macrophage phenotype from pro-inflammatory status (M1) to anti-inflammatory status (M2). Given this, MET-PLGA/Col NFs were fabricated using an electrospinning technique. Structural characterization such as morphology, chemical and mechanical properties, and drug discharge pattern were assessed. MTT assay test exposed that MET-PLGA/Col NFs remarkably had increased cell survival in comparison with pure PLGA/Collagen NFs and control (p < 0.05) 72 h after incubation. Based on the qPCR assay, a reduction in the expression of iNOS-2 and SOCS3 was found in the cells seeded on MET-PLGA/Col NFs, demonstrating the substantial modulation of the M1 phenotype to the M2 phenotype. Moreover, it was determined a main decrease in the pro-inflammatory cytokines and mediator's expression but the growth factors amount related to anti-inflammatory M2 were meaningfully upregulated. Finally, MET-PLGA/Col NFs possibly will ensure a beneficial potential for effective variation of the macrophage response from an inflammatory phase (M1) to a pro-regenerative (M2) phase.


Asunto(s)
Nanofibras , Ingeniería de Tejidos , Ingeniería de Tejidos/métodos , Medicina Regenerativa , Andamios del Tejido/química , Nanofibras/química , Colágeno , Macrófagos , Antiinflamatorios
5.
Med Oncol ; 40(6): 170, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37156929

RESUMEN

Colorectal cancer (CRC) is the third broadly identified cancer in the world. The ineffectiveness of colorectal cancer treatment is redundantly reported. Natural bioactive compounds have gained popularity in reducing the drawback of conventional anti-cancer agents. Curcumin (Cur) and Artemisinin (Art) are materials of a natural source that have been utilized to treat numerous kinds of cancers. Although the benefits of bioactive materials, their utilization is limited because of poor solubility, bioavailability, and low dispersion rate in aqueous media. Nano delivery system such as niosome can improve the bioavailability and stability of bioactive compounds within the drug. In current work, we used Cur-Art co-loaded niosomal nanoparticles (Cur-Art NioNPs) as an anti-tumor factor versus colorectal cancer cell line. The synthesized formulations were characterized using dynamic light scattering, scanning electron microscopy, and FTIR. The proliferation ability of the cells and expression of apoptosis-associated gene were MTT assay and qRT-PCR, respectively. Cur-Art NioNPs exhibited well distributed with an encapsulation efficiency of 80.27% and 85.5% for Cur and Art. The NioNPs had good release and degradation properties, and had no negative effect on the survival and proliferation ability of SW480 cells. Importantly, nanoformulation form of Cur and Art significantly displayed higher toxicity effect against SW480 cells. Furthermore, Cur-Art NioNPs increased Bax, Fas, and p53 gene expressions and suppressed Bcl2, Rb, and Cyclin D 1 gene expressions. In summary, these results display the niosome NPs as a first report of nano-combinational application of the natural herbal substances with a one-step fabricated co-delivery system for effective colorectal cancer.


Asunto(s)
Antineoplásicos , Artemisininas , Neoplasias del Colon , Curcumina , Nanopartículas , Humanos , Curcumina/farmacología , Liposomas , Neoplasias del Colon/tratamiento farmacológico , Antineoplásicos/farmacología , Artemisininas/farmacología , Línea Celular Tumoral , Portadores de Fármacos
6.
Med Oncol ; 40(3): 87, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36723692

RESUMEN

Chrysin (Chr) has drawn a lot of attention recently due to its possible anticancer properties. However, Chr's short half-life and low bioavailability restricted its utility as a medicinal agent. The purpose of this research is to design, synthesize, and test the cytotoxic effects of nano-niosomes containing chrysin (Chr-Nio) on the SKOV3 ovarian cancer cell line. Chr-Nio has a nanoparticle polydispersity index (PDI) of 0.156 and a zeta potential of - 27.4 mV, with an average diameter of 105 nm. Furthermore, Chr was encapsulated in Nio with an entrapment effectiveness of 85.5%. Chr-Nio cytotoxicity was shown to be more than free Chr in a time- and dose-dependent manner. Furthermore, as compared to free Chr-treated cells, the mRNA expression level of apoptotic genes Bcl-2, Bax, and caspase-3 in Chr-Nio-treated cells was considerably altered. According to the data, Chr may inhibit SKOV3 cell migration in vitro scratch wound experiments in a dose-dependent manner, and cells treated with Chr-Nio had the highest percentage of cell death. The findings of this study suggested that encapsulating Chr in niosome nanoparticles might be an effective medication delivery strategy for increasing Chr anticancer effects in the treatment of ovarian cancer.


Asunto(s)
Nanopartículas , Neoplasias Ováricas , Femenino , Humanos , Liposomas , Sistemas de Liberación de Medicamentos , Neoplasias Ováricas/tratamiento farmacológico , Carcinoma Epitelial de Ovario
7.
Curr Microbiol ; 80(1): 15, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36459252

RESUMEN

Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system (CNS). Compared to other types of self-limiting myelin disorders, MS compartmentalizes and maintains chronic inflammation in the CNS. Even though the exact cause of MS is unclear, it is assumed that genetic and environmental factors play an important role in susceptibility to this disease. The progression of MS is triggered by certain environmental factors, such as viral infections. The most important viruses that affect MS are Epstein-Barr virus (EBV), human herpes virus 6 (HHV-6), human endogenous retrovirus (HERV), cytomegalovirus (CMV), and varicella zoster virus (VZV). These viruses all have latent stages that allow them to escape immune detection and reactivate after exposure to various stimuli. Furthermore, their tropism for CNS and immune system cells explains their possible deleterious function in neuroinflammation. In this study, the effect of viral infections on MS disease focuses on the details of viruses that can change the risk of the disease. Paying attention to the most recent articles on the role of SARS-CoV-2 in MS disease, laboratory indicators show the interaction of the immune system with the virus. Also, strategies to prevent viruses that play a role in triggering MS are discussed, such as EBV, which is one of the most important.


Asunto(s)
COVID-19 , Infecciones por Virus de Epstein-Barr , Esclerosis Múltiple , Virosis , Humanos , Esclerosis Múltiple/etiología , Infecciones por Virus de Epstein-Barr/complicaciones , Herpesvirus Humano 4 , SARS-CoV-2 , Virosis/complicaciones
8.
J Nanobiotechnology ; 20(1): 440, 2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36209089

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to COVID-19 and has become a pandemic worldwide with mortality of millions. Nanotechnology can be used to deliver antiviral medicines or other types of viral reproduction-inhibiting medications. At various steps of viral infection, nanotechnology could suggest practical solutions for usage in the fight against viral infection. Nanotechnology-based approaches can help in the fight against SARS-CoV-2 infection. Nanoparticles can play an essential role in progressing SARS-CoV-2 treatment and vaccine production in efficacy and safety. Nanocarriers have increased the speed of vaccine development and the efficiency of vaccines. As a result, the increased investigation into nanoparticles as nano-delivery systems and nanotherapeutics in viral infection, and the development of new and effective methods are essential for inhibiting SARS-CoV-2 infection. In this article, we compare the attributes of several nanoparticles and evaluate their capability to create novel vaccines and treatment methods against different types of viral diseases, especially the SARS-CoV-2 disease.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Nanopartículas , Antivirales/farmacología , Antivirales/uso terapéutico , Humanos , Nanopartículas/uso terapéutico , Pandemias/prevención & control , SARS-CoV-2
9.
Biotechnol Appl Biochem ; 69(2): 822-839, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33786874

RESUMEN

Mesenchymal stem cells (MSCs) are one of the most prominent cells in the bone marrow. MSCs can affect acute lymphocytic leukemia (ALL) cells under hypoxic conditions. With this aim, we used MOLT-4 cells as simulators of ALL cells cocultured with bone marrow mesenchymal stem cells (BMMSCs) under hypoxic conditions in vitro. Then, mRNA and protein expression of the MAT2A, PDK1, and HK2 genes were evaluated by real-time PCR and Western blot which was also followed by apoptosis measurement by a flow-cytometric method. Next, the methylation status of the target genes was investigated by MS-qPCR. Additionally, candidate gene expressions were examined after treatment with rapamycin using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. We found that the mRNA expression of the candidate genes was augmented under the hypoxic condition in which MAT2A was upregulated in cocultured cells compared to MOLT-4, while HK2 and PDK1 were downregulated. Moreover, we found an association between gene expression and promoter methylation levels of target genes. Besides, expressions of the candidate genes were decreased, while their methylation levels were promoted following treatment with rapamycin. Our results suggest an important role for the BMMSC in regulating the methylation of genes involved in cell survival in hypoxia conditions; however, we found no evidence to prove the MSCs' effect on directing malignant lymphoblastic cells to apoptosis.


Asunto(s)
Células Madre Mesenquimatosas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Apoptosis/genética , Células de la Médula Ósea/metabolismo , Hipoxia de la Célula/genética , Humanos , Hipoxia/metabolismo , Células Madre Mesenquimatosas/metabolismo , Metionina Adenosiltransferasa , Metilación , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , ARN Mensajero/metabolismo , Sirolimus
10.
Asian Pac J Cancer Prev ; 22(8): 2587-2596, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34452574

RESUMEN

Silibinin (SIL) is a natural polyphenolic flavonoid with multiple biological and anti-cancer features. However, the complex hydrophobic nature and inadequate bioavailability of SIL hinder its efficiency at tumor sites. Investigating the possibility of an extensive strategy for better treatment of breast cancer, we carried out a comparative exploration of the inhibitory effect of SIL and SIL loaded PLGA-PEG nanoparticle (SIL-NPs) on the expression of the proapoptotic target genes, which is considered as an influential molecular target for treatment of breast cancer. The main diameter of SIL-NPs was 220 ± 6.37 and 150 ± 23.14 nm via DLS and FE-SEM respectively. Furthermore, the zeta potential of PLGA-PEG and SIL-NPs was -5.48±0.13 and -6.8±0.26 mV respectively. SIL encapsulation efficiency and drug release were determined by about 82.32 % by analyzing the calibration curve of SIL absorbance at 570 nm. Cytotoxicity of SIL and SIL-NPs was conducted by MTT assay after 24, 48, and 72 h of exposure times, and the gene expression levels of apoptotic genes, p53 and hTERT was measured by real-time PCR. Evaluation of drug toxicity revealed that SIL-NPs represents higher cytotoxic effects than pure SIL in a time and dose-dependent manner. Moreover, the results demonstrated that SIL-NPs could induce apoptosis in breast cancer cells by upregulation of caspase-3, caspase-7, p53 and Bax, along with Bcl-2, hTERT, survivin and Cyclin D1 down regulation. Our results indicated that PLGA-PEG can be used as stable carriers in nano-dimensions and SIL-NPs can be considered as a promising pharmacological agent for cancer therapy.
.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Neoplasias de la Mama/tratamiento farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Nanopartículas/administración & dosificación , Polímeros/química , Silibina/farmacología , Antineoplásicos Fitogénicos/farmacología , Proteínas Reguladoras de la Apoptosis/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Portadores de Fármacos , Liberación de Fármacos , Femenino , Perfilación de la Expresión Génica , Humanos , Nanopartículas/química , Células Tumorales Cultivadas
12.
Mater Sci Eng C Mater Biol Appl ; 92: 902-912, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30184820

RESUMEN

Herbs having various natural substances can be utilized for the biosynthesis of Silver nanoparticles (AgNPs) and act as a stable, reliable and biocompatible alternative instead of the current physical and chemical approaches. It has been reported that Matricaria chamomilla possesses unique properties, especially anti-cancerous effects. The objective of the current work was to assess the chemical characteristics and anticancer effects of biosynthesized AgNPs applying aqueous extracts of M. chamomilla against A549 lung cancer cells. UV-visible spectrum showed the maximum absorption of the biosynthesized AgNPs at 430 nm. The crystalline structure of biosynthesized AgNPs in optimal conditions was confirmed by XRD. Moreover, the presence of Ag as the ingredient element was exhibited via EDX analysis. FT-IR results also verified the AgNPs synthesis using a plant extract. The spherical shapes of the AgNPs with an average diameter size around 45.12 nm and a zeta potential value of -34 mV were characterized using DLS, and confirmed through FE-SEM and TEM. In vitro cytotoxicity assay using MTT revealed that the biosynthesized AgNPs exhibited a dose- and time- dependent cytotoxic effect against A549 lung cancer cells. Moreover, the apoptotic effects of the AgNPs were demonstrated using DAPI staining, real-time PCR and flow cytometry. According to these findings, using M. chamomilla in combination with AgNPs via green-synthesis approach may be an efficient strategy for effective treatment of lung cancer.


Asunto(s)
Biomimética/métodos , Matricaria/química , Nanopartículas del Metal/química , Extractos Vegetales/química , Plata/química , Células A549 , Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Neoplasias Pulmonares/prevención & control , Extractos Vegetales/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa
13.
Biomed Pharmacother ; 105: 773-780, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29909345

RESUMEN

The purpose of this study was to investigate the efficiency of a natural flavonoid, Chrysin (Chr), encapsulated in PLGA-PEG nanoparticles (NPs) for the modulation of macrophage polarity from the pro-inflammatory M1 to anti-inflammatory M2 phenotype. The synthetized NPs were characterized using FTIR, DLS and FE-SEM. MTT assay was used to assess the toxicity of different concentration of Chr-encapsulated NPs on LPS/IFN-γ stimulated peritoneal exudate macrophages. To investigate the repolarization efficiency of Chr-encapsulated NPs, real-time PCR was applied to measure M1 (iNOS and SOCS3) and M2 (Arg1 and Fizz) markers expression. Also, the relative mRNA and protein expression levels of pro-inflammatory cytokines including IL-6, IL-1ß and TNF-α were investigated in M1 macrophages treated with Chr-encapsulated NPs. Findings revealed that the Chr-encapsulated NPs with spherical shape and an average diameter of 235 nm were considerably less toxic to the macrophages. Additionally, the nano-formulated Chr efficiently showed a reduction in M1 markers and an increase in M2 markers levels than free Chr. Furthermore, macrophage phenotype switching by PLGA-PEG encapsulated Chr NPs significantly suppressed LPS/IFN-γ induced inflammation by a remarkable reduction in pro-inflammatory cytokine levels, TNF-α, IL-1ß, and IL-6. Convincingly, the results revealed that PLGA-PEG encapsulated Chr based drug delivery system might be introduced into biomaterials to fabricate bioactive smart multifunctional nanocomposites with macrophage repolarization activities for regenerative medicine purposes.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Polaridad Celular/efectos de los fármacos , Portadores de Fármacos/química , Flavonoides/farmacología , Macrófagos Peritoneales/efectos de los fármacos , Nanocápsulas/química , Polietilenglicoles/química , Poliglactina 910/química , Adyuvantes Inmunológicos/administración & dosificación , Animales , Polaridad Celular/inmunología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Citocinas/inmunología , Composición de Medicamentos , Liberación de Fármacos , Flavonoides/administración & dosificación , Regeneración Tisular Dirigida , Macrófagos Peritoneales/inmunología , Ratones Endogámicos C57BL , Propiedades de Superficie
14.
Artif Cells Nanomed Biotechnol ; 46(4): 819-830, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28695751

RESUMEN

The present study describes the effects of Watercress extract (WE) based electrospun nanofibrous mats on the regulation of adhesion, proliferation, cytoprotection and stemness preservation of adipose-derived stem cells (ADSCs). Watercress (Nasturtium officinale) is one of the most important medicinal plant with a board spectrum of biological functions. For this purpose, WE-loaded PCL-PEG nanofibers were fabricated by electrospinning and characterized using FE-SEM and FTIR. Adhesion, proliferation and cytoprotection of ADSCs on the nanofibers was investigated using FE-SEM and MTT assays. Analysis of cell cycle was carried out by flow-cytometry. Finally, qPCR was applied to measure the expression levels of cell cycle-regulated genes and stemness markers of ADSCs grown on the nanofibers. In this study, we found that WE-loaded PCL-PEG nanofibers had great antioxidant potential and exhibited higher cytoprotection, better adhesion, and significantly increased proliferation of ADSCs. The greater proliferation and preserving stemness ability of ADSCs on WE based nanofibers was further confirmed by higher expression levels of cell cycle-regulated genes and stemness markers. These results demonstrate that WE-loaded PCL-PEG electrospun nanofibrous mats appear suitable to support ADSCs adhesion and proliferation while concurrently preserving the cell stemness, therefore representing a hopeful approach for applying in stem cell based regenerative medicine.


Asunto(s)
Tejido Adiposo/metabolismo , Proliferación Celular , Nanofibras/química , Nasturtium/química , Células Madre/metabolismo , Andamios del Tejido/química , Tejido Adiposo/citología , Línea Celular , Humanos , Células Madre/citología
15.
Phytother Res ; 31(11): 1651-1668, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28857315

RESUMEN

To reach ideal therapeutic potential of stem cells for regenerative medicine purposes, it is essential to retain their self-renewal and differentiation capacities. Currently, biological factors are extensively used for stemness maintaining and differentiation induction of stem cells. However, low stability, high cost, complicated production process, and risks associated with viral/endotoxin infection hamper the widespread use of biological factors in the stem cell biology. Moreover, regarding the modulation of several signaling cascades, which lead to a distinct fate, phytochemicals are preferable in the stem cells biology because of their efficiency. Considering the issues related to the application of biological factors and potential advantages of phytochemicals in stem cell engineering, there is a considerable increasing trend in studies associated with the application of novel alternative molecules in the stem cell biology. In support of this statement, we aimed to highlight the various effects of phytochemicals on signaling cascades involved in commitment of stem cells. Hence, in this review, the current trends in the phytochemicals-based modulation of stem cell fate have been addressed. Copyright © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Fitoquímicos/farmacología , Transducción de Señal , Células Madre/citología , Humanos , Células Madre/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...