Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38139011

RESUMEN

Many retinal degenerative diseases result in vision impairment or permanent blindness due to photoreceptor loss or dysfunction. It has been observed that Pde6brd1 mice (rd1), which carry a spontaneous nonsense mutation in the pde6b gene, have a strong phenotypic similarity to patients suffering from autosomal recessive retinitis pigmentosa. In this study, we present a novel mouse model of retinitis pigmentosa generated through pde6b gene knockout using CRISPR/Cas9 technology. We compare this Pde6b-KO mouse model to the rd1 mouse model to gain insights into the progression of retinal degeneration. The functional assessment of the mouse retina and the tracking of degeneration dynamics were performed using electrophysiological methods, while retinal morphology was analyzed through histology techniques. Interestingly, the Pde6b-KO mouse model demonstrated a higher amplitude of photoresponse than the rd1 model of the same age. At postnatal day 12, the thickness of the photoreceptor layer in both mouse models did not significantly differ from that of control animals; however, by day 15, a substantial reduction was observed. Notably, the decline in the number of photoreceptors in the rd1 model occurred at a significantly faster rate. These findings suggest that the C3H background may play a significant role in the early stages of retinal degeneration.


Asunto(s)
Degeneración Retiniana , Retinitis Pigmentosa , Humanos , Ratones , Animales , Degeneración Retiniana/patología , Electrorretinografía , Ratones Endogámicos C3H , Retinitis Pigmentosa/patología , Retina/patología , Modelos Animales de Enfermedad
2.
Cells ; 11(19)2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36231018

RESUMEN

The avian magnetic compass allows orientation during migration and is shown to function properly under short-wavelength but not long-wavelength visible light. Therefore, the magnetoreceptive system is assumed to be light- and wavelength-dependent and localized in the retina of the eye. Putative candidates for the role of primary magnetosensory molecules are the cryptochromes that are known to be expressed in the avian retina and must be able to interact with phototransduction proteins. Previously, we reported that in migratory birds change in magnetic field direction induces significant effects on electroretinogram amplitude in response to blue flashes, and such an effect was observed only in the nasal quadrant of the retina. Here, we report new electroretinographic, microscopic and microspectrophotometric data on European robins, confirming the magnetosensitivity of the retinal nasal quadrant after applying the background illumination. We hypothesized that magnetoreceptive distinction of this region may be related to its morphology and analyzed the retinal distribution and optical properties of oil droplets, the filtering structures within cones. We found that the nasal quadrant contains double cones with the most intensely colorized oil droplets compared to the rest of the retina, which may be related to its magnetosensory function.


Asunto(s)
Migración Animal , Criptocromos , Migración Animal/fisiología , Animales , Aves , Criptocromos/metabolismo , Campos Magnéticos , Retina/metabolismo
3.
Int J Mol Sci ; 22(24)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34948198

RESUMEN

Green rods (GRs) represent a unique type of photoreceptor to be found in the retinas of anuran amphibians. These cells harbor a cone-specific blue-sensitive visual pigment but exhibit morphology of the outer segment typical for classic red rods (RRs), which makes them a perspective model object for studying cone-rod transmutation. In the present study, we performed detailed electrophysiological examination of the light sensitivity, response kinetics and parameters of discrete and continuous dark noise in GRs of the two anuran species: cane toad and marsh frog. Our results confirm that anuran GRs are highly specialized nocturnal vision receptors. Moreover, their rate of phototransduction quenching appeared to be about two-times slower than in RRs, which makes them even more efficient single photon detectors. The operating intensity ranges for two rod types widely overlap supposedly allowing amphibians to discriminate colors in the scotopic region. Unexpectedly for typical cone pigments but in line with some previous reports, the spontaneous isomerization rate of the GR visual pigment was found to be the same as for rhodopsin of RRs. Thus, our results expand the knowledge on anuran GRs and show that these are even more specialized single photon catchers than RRs, which allows us to assign them a status of "super-rods".


Asunto(s)
Fototransducción/fisiología , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Animales , Anuros/anatomía & histología , Isomerismo , Cinética , Luz , Visión Nocturna/fisiología , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/fisiología , Retina/anatomía & histología , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/fisiología , Células Fotorreceptoras Retinianas Bastones/fisiología , Rodopsina , Opsinas de Bastones , Visión Ocular/fisiología
4.
Proc Biol Sci ; 287(1940): 20202507, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33290671

RESUMEN

Migratory birds are known to be sensitive to external magnetic field (MF). Much indirect evidence suggests that the avian magnetic compass is localized in the retina. Previously, we showed that changes in the MF direction could modulate retinal responses in pigeons. In the present study, we performed similar experiments using the traditional model animal to study the magnetic compass, European robins. The photoresponses of isolated retina were recorded using ex vivo electroretinography (ERG). Blue- and red-light stimuli were applied under an MF with the natural intensity and two MF directions, when the angle between the plane of the retina and the field lines was 0° and 90°, respectively. The results were separately analysed for four quadrants of the retina. A comparison of the amplitudes of the a- and b-waves of the ERG responses to blue stimuli under the two MF directions revealed a small but significant difference in a- but not b-waves, and in only one (nasal) quadrant of the retina. The amplitudes of both the a- and b-waves of the ERG responses to red stimuli did not show significant effects of the MF direction. Thus, changes in the external MF modulate the European robin retinal responses to blue flashes, but not to red flashes. This result is in a good agreement with behavioural data showing the successful orientation of birds in an MF under blue, but not under red illumination.


Asunto(s)
Migración Animal , Electrorretinografía , Campos Magnéticos , Pájaros Cantores , Animales , Orientación
5.
PLoS One ; 15(3): e0229142, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32134934

RESUMEN

Migratory birds can detect the direction of the Earth's magnetic field using the magnetic compass sense. However, the sensory basis of the magnetic compass still remains a puzzle. A large body of indirect evidence suggests that magnetic compass in birds is localized in the retina. To confirm this point, an evidence of visual signals modulation by magnetic field (MF) should be obtained. In a previous study we showed that MF inclination impacts the amplitude of ex vivo electroretinogram (ERG) recorded from isolated pigeon retina. Here we present the results of an analysis of putative MF effect on one component of ERG, the photoreceptor's response, isolated from the total ERG by adding sodium aspartate and barium chloride to the perfusion solution. Photoresponses were recorded from isolated retinae of domestic pigeons Columba livia. The retinal samples were placed in MF that was modulated by three pairs of orthogonal Helmholtz coils. Light stimuli (blue and red) were applied under two inclinations of MF, 0° and 90°. In all the experiments, preparations from two parts of retina were used, red field (with dominant red-sensitive cones) and yellow field (with relatively uniform distribution of cone color types). In contrast to the whole retinal ERG, we did not observe any effect of MF inclination on either amplitude or kinetics of pharmacologically isolated photoreceptor responses to blue or red half-saturating flashes. A possible explanations of these results could be that magnetic compass sense is localized in retinal cells other than photoreceptors, or that photoreceptors do participate in magnetoreception, but require some processing of compass information in other retinal layers, so that only whole retina signal can reflect the response to changing MF.


Asunto(s)
Migración Animal/fisiología , Columbidae/anatomía & histología , Campos Magnéticos , Orientación Espacial/fisiología , Células Fotorreceptoras de Vertebrados/fisiología , Retina/anatomía & histología , Taxia/fisiología , Animales , Color , Electrorretinografía/veterinaria , Fondo de Ojo , Luz , Magnetismo , Estimulación Luminosa , Células Fotorreceptoras de Vertebrados/citología , Retina/citología , Retina/diagnóstico por imagen , Células Fotorreceptoras Retinianas Conos/citología , Células Fotorreceptoras Retinianas Conos/fisiología
6.
Mol Vis ; 25: 400-414, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31523118

RESUMEN

Purpose: Accumulating evidence suggests that dopamine, the major catecholamine in the vertebrate retina, may modulate cAMP-mediated signaling in photoreceptors to optimize vision in the light/dark cycle. The main putative mechanism of dopamine-induced adaptation changes in photoreceptors is activation of D2-like receptors (D2R), which leads to a decrease of the intracellular cAMP level and reduction of protein kinase A (PKA) activity. However, the mechanisms by which dopamine exerts its regulating effect on the phototransduction cascade remain largely unknown. The aim of the present study was to investigate the effects of dopamine and dopamine receptor agonists on rod photoresponses. Methods: The experiments were performed on solitary rods of the Rana ridibunda frog. Photoreceptor currents were recorded using a suction pipette technique. The effects of dopamine (0.1-50 µM) and selective dopamine receptor agonists-D1R agonist SKF-38393 (0.1-50 µM), D2R agonist quinpirole (2.5-50 µM), and D1-D2 receptor heterodimer agonist SKF-83959 (50 µM)-were examined. Results: We found that, when applied to the rod inner segments (RISs), dopamine and dopamine receptor agonists had no effect on photoresponses. In contrast, the rods responded to dopamine and all agonists applied to their outer segments by decreasing sensitivity to light. At the highest tested concentration (50 µM), the most prominent effect on light sensitivity was induced by D1R agonist SKF-38393, while dopamine, D2R agonist quinpirole, and D1-D2 receptor heterodimer agonist SKF-83959 produced somewhat lower and approximately equal effects. Moreover, SKF-38393 reduced sensitivity at all tested concentrations starting from the smallest one (0.1 µM), whereas dopamine and quinpirole started their action from the higher concentrations of 2.5 µM and 50 µM, respectively. In addition, dopamine, SKF-38393, and quinpirole, on average, did not change the intracellular calcium level as judged from the "exchange current", while SKF-83959 increased it by ~1.3 times. Conclusions: Dopamine induces a decrease in rod sensitivity, mostly by reducing the activation rate of the cascade, and to a much lesser extent, speeding up the turning off of the cascade. The sign of the reaction to all tested drugs, lack of selectivity of dopamine and dopamine receptor agonist action, and analysis of factors that determine sensitivity of photoreceptors suggest that, in rod outer segments (ROSs), dopamine action is mediated by D1-D2 receptor heterodimers but not D1R or D2R alone. This work supports the assumption made earlier by other authors that dopamine exercises its regulatory effect via at least two independent mechanisms, which are cAMP and Ca2+ mediated.


Asunto(s)
Agonistas de Dopamina/farmacología , Dopamina/farmacología , Fototransducción/efectos de los fármacos , Ranidae/fisiología , Receptores de Dopamina D1/agonistas , Células Fotorreceptoras Retinianas Bastones/fisiología , Células Fotorreceptoras Retinianas Bastones/efectos de la radiación , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/farmacología , Animales , Calcio/metabolismo , Cinética , Luz , Fototransducción/efectos de la radiación , Receptores de Dopamina D1/metabolismo , Segmento Externo de la Célula en Bastón/efectos de los fármacos , Segmento Externo de la Célula en Bastón/metabolismo , Segmento Externo de la Célula en Bastón/efectos de la radiación , Factores de Tiempo
7.
J Gen Physiol ; 151(7): 887-897, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30992369

RESUMEN

Rod photoreceptors of the vertebrate retina produce, in darkness, spontaneous discrete current waves virtually identical to responses to single photons. The waves comprise an irreducible source of noise (discrete dark noise) that may limit the threshold sensitivity of vision. The waves obviously originate from acts of random activation of single rhodopsin molecules. Until recently, it was generally accepted that the activation occurs due to the rhodopsin thermal motion. Yet, a few years ago it was proposed that rhodopsin molecules are activated not by heat but rather by real photons generated within the retina by chemiluminescence. Using a high-sensitive photomultiplier, we measured intensities of biophoton emission from isolated retinas and eyecups of frogs (Rana ridibunda) and fish (sterlet, Acipenser ruthenus). Retinal samples were placed in a perfusion chamber and emitted photons collected by a high-aperture quartz lens. The collected light was sent to the photomultiplier cathode through a rotating chopper so that a long-lasting synchronous accumulation of the light signal was possible. The absolute intensity of bio-emission was estimated by the response of the measuring system to a calibrated light source. The intensity of the source, in turn, was quantified by measuring rhodopsin bleaching with single-rod microspectrophotometry. We also measured the frequency of discrete dark waves in rods of the two species with suction pipette recordings. Expressed as the rate constant of rhodopsin activation, it was 1.2 × 10-11/s in frogs and 7.6 × 10-11/s in sterlets. Approximately two thirds of retinal samples of each species produced reliably measurable biophoton emissions. However, its intensity was ≥100 times lower than necessary to produce the discrete dark noise. We argue that this is just a lower estimate of the discrepancy between the hypothesis and experiment. We conclude that the biophoton hypothesis on the origin of discrete dark noise in photoreceptors must be rejected.


Asunto(s)
Fotones , Células Fotorreceptoras/fisiología , Rodopsina/efectos de la radiación , Absorción de Radiación , Animales , Peces , Microespectrofotometría/instrumentación , Microespectrofotometría/métodos , Rana ridibunda , Rodopsina/química , Rodopsina/metabolismo , Relación Señal-Ruido , Visión Ocular
8.
Mol Vis ; 23: 416-430, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28744093

RESUMEN

PURPOSE: To identify steps of the phototransduction cascade responsible for the delay of the photoresponse. METHODS: Electrical responses of fish (Carassius) cones and Rana ridibunda frog rods and cones were recorded with a suction pipette technique and as an aspartate-isolated mass receptor potential from isolated perfused retinas. Special attention was paid to sufficiently high temporal resolution (1-ms flash, 700 Hz amplification bandpass). Stochastic simulation of the activation steps from photon absorption to the formation of catalytically active phosphodiesterase (PDE) was performed. In addition, a deterministic mathematical model was fit to the experimental responses. The model included a detailed description of the activation steps of the cascade that enabled identification of the role of individual transduction stages in shaping the initial part of the response. RESULTS: We found that the apparent delay of the photoresponse gets shorter with increasing stimulus intensity and reaches an asymptotic value of approximately 3 ms in cones and greater than or equal to 10 ms in rods. The result seems paradoxical since it is suggested that the delay occurs in the chain of steps from photon absorption to the formation of active transducin (T*) which in cones is, on average, slower than in rods. Stochastic simulation shows that actually the steps from photon absorption to T* may not contribute perceptibly to the delay. Instead, the delay occurs at the stage that couples the cycle of repetitive activation of T by rhodopsin (R*) with the activation of PDE. These steps include formation of T* (= T α GTP) out of T αßγ GTP released from the activation cycle and the subsequent interaction of T* with PDE. This poses a problem. The duration of an average cycle of activation of T in rods is approximately 5 ms and is determined by the frequency of collisions between R* and T in the photoreceptor membrane. The frequency is roughly proportional to the surface packing density of T in the membrane. As the packing density of PDE is approximately 12 times lower than that of T, it could be expected that the rate of the T*-PDE interaction were an order of magnitude slower than that of R* and T. As modeling shows, this is the case in rods. However, the delay in cones is approximately 3 ms which could be achieved only at a T*-PDE interaction time of less than or equal to 5 ms. This means that either the frequency of the collisions of T* and PDE, or the efficiency of collisions, or both in cones are approximately ten times higher than in rods. This may be a challenge to the present model of the molecular organization of the photoreceptor membrane. CONCLUSIONS: The delay of the photoresponse is mainly set by the rate of interaction of T* with PDE. In cones, the delay is shorter than in rods and, moreover, shorter than the duration of the cycle of repetitive activation of T by R*. This poses a problem for the present model of diffusion interaction of phototransduction proteins in the photoreceptor membrane.


Asunto(s)
Células Fotorreceptoras Retinianas Conos/fisiología , Células Fotorreceptoras Retinianas Bastones/fisiología , Transducción de Señal/fisiología , Visión Ocular/fisiología , Animales , Carpas , Electrorretinografía , Proteínas de Unión al GTP/metabolismo , Potenciales de la Membrana/fisiología , Hidrolasas Diéster Fosfóricas/metabolismo , Estimulación Luminosa , Rana ridibunda , Retina/efectos de la radiación , Rodopsina/metabolismo , Procesos Estocásticos , Transducina/metabolismo
9.
J Gen Physiol ; 149(7): 689-701, 2017 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-28611079

RESUMEN

The absolute sensitivity of vertebrate retinas is set by a background noise, called dark noise, which originates from several different cell types and is generated by different molecular mechanisms. The major share of dark noise is produced by photoreceptors and consists of two components, discrete and continuous. Discrete noise is generated by spontaneous thermal activations of visual pigment. These events are undistinguishable from real single-photon responses (SPRs) and might be considered an equivalent of the signal. Continuous noise is produced by spontaneous fluctuations of the catalytic activity of the cGMP phosphodiesterase. This masks both SPR and spontaneous SPR-like responses. Circadian rhythms affect photoreceptors, among other systems by periodically increasing intracellular cAMP levels ([cAMP]in), which increases the size and changes the shape of SPRs. Here, we show that forskolin, a tool that increases [cAMP]in, affects the magnitude and frequency spectrum of the continuous and discrete components of dark noise in photoreceptors. By changing both components of rod signaling, the signal and the noise, cAMP is able to increase the photoreceptor signal-to-noise ratio by twofold. We propose that this results in a substantial improvement of signal detection, without compromising noise rejection, at the rod bipolar cell synapse.


Asunto(s)
AMP Cíclico/metabolismo , Fotones , Células Fotorreceptoras Retinianas Bastones/metabolismo , Visión Ocular , Animales , Bufo bufo , Colforsina/farmacología , Rana ridibunda , Células Fotorreceptoras Retinianas Bastones/efectos de los fármacos , Células Fotorreceptoras Retinianas Bastones/fisiología , Umbral Sensorial , Relación Señal-Ruido
10.
J Gen Physiol ; 140(4): 421-33, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23008435

RESUMEN

In early studies, both cyclic AMP (cAMP) and cGMP were considered as potential secondary messengers regulating the conductivity of the vertebrate photoreceptor plasma membrane. Later discovery of the cGMP specificity of cyclic nucleotide-gated channels has shifted attention to cGMP as the only secondary messenger in the phototransduction cascade, and cAMP is not considered in modern schemes of phototransduction. Here, we report evidence that cAMP may also be involved in regulation of the phototransduction cascade. Using a suction pipette technique, we recorded light responses of isolated solitary rods from the frog retina in normal solution and in the medium containing 2 µM of adenylate cyclase activator forskolin. Under forskolin action, flash sensitivity rose more than twofold because of a retarded photoresponse turn-off. The same concentration of forskolin lead to a 2.5-fold increase in the rod outer segment cAMP, which is close to earlier reported natural day/night cAMP variations. Detailed analysis of cAMP action on the phototransduction cascade suggests that several targets are affected by cAMP increase: (a) basal dark phosphodiesterase (PDE) activity decreases; (b) at the same intensity of light background, steady background-induced PDE activity increases; (c) at light backgrounds, guanylate cyclase activity at a given fraction of open channels is reduced; and (d) the magnitude of the Ca(2+) exchanger current rises 1.6-fold, which would correspond to a 1.6-fold elevation of [Ca(2+)](in). Analysis by a complete model of rod phototransduction suggests that an increase of [Ca(2+)](in) might also explain effects (b) and (c). The mechanism(s) by which cAMP could regulate [Ca(2+)](in) and PDE basal activity is unclear. We suggest that these regulations may have adaptive significance and improve the performance of the visual system when it switches between day and night light conditions.


Asunto(s)
AMP Cíclico/metabolismo , Fototransducción , Segmento Externo de la Célula en Bastón/metabolismo , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Adenilil Ciclasas/efectos de los fármacos , Animales , Calcio/metabolismo , Colforsina/farmacología , AMP Cíclico/agonistas , Guanilato Ciclasa/metabolismo , Luz , Rana ridibunda , Segmento Externo de la Célula en Bastón/fisiología , Visión Ocular
11.
J Gen Physiol ; 132(5): 587-604, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18955597

RESUMEN

The time course of the light-induced activity of phototrandsuction effector enzyme cGMP-phosphodiesterase (PDE) is shaped by kinetics of rhodopsin and transducin shut-offs. The two processes are among the key factors that set the speed and sensitivity of the photoresponse and whose regulation contributes to light adaptation. The aim of this study was to determine time courses of flash-induced PDE activity in frog rods that were dark adapted or subjected to nonsaturating steady background illumination. PDE activity was computed from the responses recorded from solitary rods with the suction pipette technique in Ca(2+)-clamping solution. A flash applied in the dark-adapted state elicits a wave of PDE activity whose rising and decaying phases have characteristic times near 0.5 and 2 seconds, respectively. Nonsaturating steady background shortens both phases roughly to the same extent. The acceleration may exceed fivefold at the backgrounds that suppress approximately 70% of the dark current. The time constant of the process that controls the recovery from super-saturating flashes (so-called dominant time constant) is adaptation independent and, hence, cannot be attributed to either of the processes that shape the main part of the PDE wave. We hypothesize that the dominant time constant in frog rods characterizes arrestin binding to rhodopsin partially inactivated by phosphorylation. A mathematical model of the cascade that considers two-stage rhodopsin quenching and transducin inactivation can mimic experimental PDE activity quite well. The effect of light adaptation on the PDE kinetics can be reproduced in the model by concomitant acceleration on both rhodopsin phosphorylation and transducin turn-off, but not by accelerated arrestin binding. This suggests that not only rhodopsin but also transducin shut-off is under adaptation control.


Asunto(s)
Adaptación Ocular/fisiología , Rana ridibunda/fisiología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Visión Ocular/fisiología , 3',5'-GMP Cíclico Fosfodiesterasas/metabolismo , Animales , Arrestina/metabolismo , Luz , Modelos Biológicos , Enmascaramiento Perceptual/fisiología , Fosforilación , Estimulación Luminosa , Rodopsina/metabolismo , Transducina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA