Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Cell Neurosci ; 18: 1354520, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846638

RESUMEN

The lateral superior olive (LSO), a prominent integration center in the auditory brainstem, contains a remarkably heterogeneous population of neurons. Ascending neurons, predominantly principal neurons (pLSOs), process interaural level differences for sound localization. Descending neurons (lateral olivocochlear neurons, LOCs) provide feedback into the cochlea and are thought to protect against acoustic overload. The molecular determinants of the neuronal diversity in the LSO are largely unknown. Here, we used patch-seq analysis in mice at postnatal days P10-12 to classify developing LSO neurons according to their functional and molecular profiles. Across the entire sample (n = 86 neurons), genes involved in ATP synthesis were particularly highly expressed, confirming the energy expenditure of auditory neurons. Two clusters were identified, pLSOs and LOCs. They were distinguished by 353 differentially expressed genes (DEGs), most of which were novel for the LSO. Electrophysiological analysis confirmed the transcriptomic clustering. We focused on genes affecting neuronal input-output properties and validated some of them by immunohistochemistry, electrophysiology, and pharmacology. These genes encode proteins such as osteopontin, Kv11.3, and Kvß3 (pLSO-specific), calcitonin-gene-related peptide (LOC-specific), or Kv7.2 and Kv7.3 (no DEGs). We identified 12 "Super DEGs" and 12 genes showing "Cluster similarity." Collectively, we provide fundamental and comprehensive insights into the molecular composition of individual ascending and descending neurons in the juvenile auditory brainstem and how this may relate to their specific functions, including developmental aspects.

2.
J Physiol ; 600(10): 2461-2497, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35439328

RESUMEN

Sound localization involves information analysis in the lateral superior olive (LSO), a conspicuous nucleus in the mammalian auditory brainstem. LSO neurons weigh interaural level differences (ILDs) through precise integration of glutamatergic excitation from the cochlear nucleus (CN) and glycinergic inhibition from the medial nucleus of the trapezoid body (MNTB). Sound sources can be localized even during sustained perception, an accomplishment that requires robust neurotransmission. Virtually nothing is known about the sustained performance and the temporal precision of MNTB-LSO inputs after postnatal day (P)12 (time of hearing onset) and whether acoustic experience guides development. Here we performed whole-cell patch-clamp recordings to investigate neurotransmission of single MNTB-LSO fibres upon sustained electrical stimulation (1-200 Hz/60 s) at P11 and P38 in wild-type (WT) and deaf otoferlin (Otof) knock-out (KO) mice. At P11, WT and KO inputs performed remarkably similarly. In WTs, the performance increased drastically between P11 and P38, e.g. manifested by an 8 to 11-fold higher replenishment rate (RR) of synaptic vesicles and action potential robustness. Together, these changes resulted in reliable and highly precise neurotransmission at frequencies ≤100 Hz. In contrast, KO inputs performed similarly at both ages, implying impaired synaptic maturation. Computational modelling confirmed the empirical observations and established a reduced RR per release site for P38 KOs. In conclusion, acoustic experience appears to contribute massively to the development of reliable neurotransmission, thereby forming the basis for effective ILD detection. Collectively, our results provide novel insights into experience-dependent maturation of inhibitory neurotransmission and auditory circuits at the synaptic level. KEY POINTS: Inhibitory glycinergic inputs from the medial nucleus of the trapezoid body (MNTB) to the lateral superior olive (LSO) are involved in sound localization. This brainstem circuit performs reliably throughout life. How such reliability develops is unknown. Here we investigated the role of acoustic experience on the functional maturation of MNTB-LSO inputs at juvenile (postnatal day P11) and young adult ages (P38) employing deaf mice lacking otoferlin (KO). We analysed neurotransmission at single MNTB-LSO fibres in acute brainstem slices employing prolonged high-frequency stimulation (1-200 Hz/60 s). At P11, KO inputs still performed normally, as manifested by normal synaptic attenuation, fidelity, replenishment rate, temporal precision and action potential robustness. Between P11 and P38, several synaptic parameters increased substantially in wild-type mice, collectively resulting in high-fidelity and temporally precise neurotransmission. In contrast, maturation of synaptic fidelity was largely absent in KOs after P11. Collectively, reliable neurotransmission at inhibitory MNTB-LSO inputs develops under the guidance of acoustic experience.


Asunto(s)
Sordera , Localización de Sonidos , Potenciales de Acción/fisiología , Animales , Vías Auditivas/fisiología , Proteínas de la Membrana , Ratones , Núcleo Olivar/fisiología , Reproducibilidad de los Resultados , Localización de Sonidos/fisiología , Transmisión Sináptica/fisiología
3.
J Physiol ; 597(8): 2269-2295, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30776090

RESUMEN

KEY POINTS: The lateral superior olive (LSO), a brainstem hub involved in sound localization, integrates excitatory and inhibitory inputs from the ipsilateral and the contralateral ear, respectively. In gerbils and rats, inhibition to the LSO reportedly shifts from GABAergic to glycinergic within the first three postnatal weeks. Surprisingly, we found no evidence for synaptic GABA signalling during this time window in mouse LSO principal neurons. However, we found that presynaptic GABAB Rs modulate Ca2+ influx into medial nucleus of the trapezoid body axon terminals, resulting in reduced synaptic strength. Moreover, GABA elicited strong responses in LSO neurons that were mediated by extrasynaptic GABAA Rs. RNA sequencing revealed highly abundant δ subunits, which are characteristic of extrasynaptic receptors. Whereas GABA increased the excitability of neonatal LSO neurons, it reduced the excitability around hearing onset. Collectively, GABA appears to control the excitability of mouse LSO neurons via extrasynaptic and presynaptic signalling. Thus, GABA acts as a modulator, rather than as a classical transmitter. ABSTRACT: GABA and glycine mediate fast inhibitory neurotransmission and are coreleased at several synapse types. Here we assessed the contribution of GABA and glycine in synaptic transmission between the medial nucleus of the trapezoid body (MNTB) and the lateral superior olive (LSO), two nuclei involved in sound localization. Whole-cell patch-clamp experiments in acute mouse brainstem slices at postnatal days (P) 4 and 11 during pharmacological blockade of GABAA receptors (GABAA Rs) and/or glycine receptors demonstrated no GABAergic synaptic component on LSO principal neurons. A GABAergic component was absent in evoked inhibitory postsynaptic currents and miniature events. Coimmunofluorescence experiments revealed no codistribution of the presynaptic GABAergic marker GAD65/67 with gephyrin, a postsynaptic marker for GABAA Rs, corroborating the conclusion that GABA does not act synaptically in the mouse LSO. Imaging experiments revealed reduced Ca2+ influx into MNTB axon terminals following activation of presynaptic GABAB Rs. GABAB R activation reduced the synaptic strength at P4 and P11. GABA appears to act on extrasynaptic GABAA Rs as demonstrated by application of 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol, a δ-subunit-specific GABAA R agonist. RNA sequencing showed high mRNA levels for the δ-subunit in the LSO. Moreover, GABA transporters GAT-1 and GAT-3 appear to control extracellular GABA. Finally, we show an age-dependent effect of GABA on the excitability of LSO neurons. Whereas tonic GABA increased the excitability at P4, leading to spike facilitation, it decreased the excitability at P11 via shunting inhibition through extrasynaptic GABAA Rs. Taken together, we demonstrate a modulatory role of GABA in the murine LSO, rather than a function as a classical synaptic transmitter.


Asunto(s)
Complejo Olivar Superior/fisiología , Cuerpo Trapezoide/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Calcio/fisiología , Femenino , Glicina/fisiología , Masculino , Ratones Endogámicos C57BL , Neuronas/fisiología , Receptores de GABA-A/fisiología , Receptores de Glicina/fisiología , Localización de Sonidos , Transmisión Sináptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...